Psychopharmacology of the Response to Noise, with Special Reference to Audiogenic Seizure in Mice

  • Alice G. Lehmann


Troubles induced by intense noise can affect various physiological functions: cardiovascular or circulatory systems, sleep, endocrines, reproduction, susceptibility to infection. One of the most obvious harmful effects of noise is its influence on the nervous system. The first nervous system damages induced by noise are located at its most peripheral level: the ear. Very loud and long lasting noises can give auditory troubles going as far as total deafness. The only protection against these injuries is to obstruct the ears, as done in airfields, for example. But noises loud enough to induce injuries at the auditory level can, however, be very harmful for the nervous system and can give troubles going from an abnormal excitability to loss of sleep and to a real nervous breakdown. The degree of nuisance of this overstimulation is felt differently according to different individuals and is closely related to the state of their nervous system; a defect in it can sensitize to noise and lead to more or less important disorders.


Sympathetic Nervous System Biogenic Amine Tricarboxylic Acid Cycle Audiogenic Seizure Nervous System Damage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehmann, A. and R.G. Busnel, 1963. A study of the audiogenic seizure. In: R.G. Busnel (Ed.), Acoustic behaviour of animals, Elsevier, Amsterdam, pp. 244–274.Google Scholar
  2. 2.
    Forster, F.M., P. Hansotia, C.S. Cleeland and A. Ludwig, 1969. A case of voice-induced epilepsy treated by conditioning. Neurology 19:32 5–331.Google Scholar
  3. 3.
    Lehmann, A. et D.A. Fless, 1962. Etude de l’action de drogues psychotropes sur les processus d’excitation et d’inhibition du S.N.C. par le test de la crise audiogène du rat. Psychopharma-cologia 3:331–343.CrossRefGoogle Scholar
  4. 4.
    Cosnier, J., A.M. Brandon et A. Duveau, 1962. Quelques particularités du comportement des souris sensibles à la crise audiogène. Compte Rendu Societe des Biologie (Paris) 156:2071–2074.Google Scholar
  5. 5.
    Cosnier, J., A. Duveau et E. Vernet-Maury, 1963. Caractères différentiels du comportement des rats et des souris sensibles et réfractaires a la crise audiogène. Journal de Physiologie (Paris) 55:130–131.Google Scholar
  6. 6.
    Ginsburg, B.E., 1954. Genetics and the physiology of the nervous system. Genetics and the inheritance of integrated neurological and psychiatric patterns. Proceedings Association Research Nervous and Mental Disease 33:39–56.Google Scholar
  7. 7.
    Lehmann, A. et E. Boesiger, 1964. Sur le déterminisme génétique de l’épilepsie acoustique de Mus muscuius (Swiss Rb). Compte Rendu Academie des Sciences (Paris). 258:4858–4861.Google Scholar
  8. 8.
    Mouse News Letter, 1959. 21:42.Google Scholar
  9. 9.
    Suter, C., W.O. Klingmann, D. Boggs, O.W. Lacey, R. Marks and C.B. Coplinger, 1958. Sound-induced seizures in animals. The efficiency of certain anticonvulsivants in controlling sound-induced seizures in DBA/2 mice. Neurology 8, Suppl. 1:121–124.PubMedGoogle Scholar
  10. 10.
    Swinyard, E.A., 1963. Some physiological properties of audiogenic seizures in mice and their alteration by drugs. In: R.G. Busnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogene, Editions du C.N.R.S., Paris. pp. 405–421.Google Scholar
  11. 11.
    Fink, G.B. and E.A. Swinyard, 1959. Modification of maximal audiogenic and electroshock seizures in mice by psychopharma-cologic drugs. Journal Pharmacology and Experimental Therapeutics 127:318–324.Google Scholar
  12. 12.
    Halpern, B.N. et Lehmann, A., 1957. Bases expérimentales de l’action thérapeutique d’une nouvelle médication sédative et anti-anxieuse, le carbamate de méthyl 3 pentyne 1 ol 3. Presse Médicale 27:622–625.Google Scholar
  13. 13.
    Wilson, C.W.M., 1959. Drug antagonism and audiogenic seizures in mice. British Journal of Pharmacology 14:415–419.Google Scholar
  14. 14.
    Plotnikoff, N.P., 1961. Drug resistance due to inbreeding. Science 134:1881–1882.PubMedCrossRefGoogle Scholar
  15. 15.
    Plotnikoff, N.P., 1958. Bioassay of potential tranquilizers and sedatives against audiogenic seizures in mice. Archives Internationales de Pharmacodynamie et de Therapie 116:130–135.PubMedGoogle Scholar
  16. 16.
    Langer, S.Z., J.M. Trifaro and V.G. Foglia, 1962. Accion protectora de la hidroxidiona sobre las convulsiones audiogenas. Revista de la Sociedad Argentina de Biologia (Buenos Aires) 38: 50–54.Google Scholar
  17. 17.
    Busnel, R.G., A. Lehmann et M.C. Busnel, 1958. Etude de la drise audiogène de la souris comme test psychopharmacologique: son application aux substances du type “tranquilliseurs”. Pathologie et Biologie (Paris) 1–10:749–762.Google Scholar
  18. 18.
    Foglia, V.G., R.P. Montanelli, S.Z. Langer et R. Epstein, 1963. Action des drogues psychotropes sur les convulsions audiogènes chez la souris. Compte Rendu Société Biologie (Paris) 157: 1813–1814.Google Scholar
  19. 19.
    Plotnikoff, N.P., 1963. A neuropharmacological study of escape from audiogenic seizures. In: R.G. Busnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogene, Editions du C.N.R.S., Paris, pp. 429–443.Google Scholar
  20. 20.
    Halpern, B.N. et A. Lehmann, 1956. Action protectrice du carbamate de methyl 3 pentyne 1 ol 3 (CMP) contre la crise convulsive audiogene. Compte Rendu Societe Biologie (Paris) 150:1863–1866.Google Scholar
  21. 21.
    Raynaud, G. et G. Valette, 1963. Action des dérivés de la phénothiazine et de l’halopéridol sur la crise audiogène de la souris. Archives Internationales de Pharmacodynamie et de Therapie 142:425–439.PubMedGoogle Scholar
  22. 22.
    Valette, G. et G. Raynaud, 1963. Action des dérivés de la phénothiazine sur la crise audiogène de la souris. In: R.G. Busnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogene, Editions du C.N.R.S., Paris, pp. 311–324.Google Scholar
  23. 23.
    Roberts, E., C.F. Baxter and E. Eidelberg, 1960. Some aspects of cerebral metabolism and physiology of gamma-amino-butyric acid. In : D.B. Tower and J.P. Schade (Eds), Structure and function of the cerebral cortex, Elsevier, Amsterdam, pp. 392–404.Google Scholar
  24. 24.
    Kravitz, E.A., S.W. Kuffler and D.D. Potter, 1963. Gamma-amino-butyric acid and other blocking compound in Crustacea. III — Their relative concentrations in separated motor and inhibitory axons. Journal Neurophysiology 26:739–751.Google Scholar
  25. 25.
    Balzer, A., P. Holtz und D. Palm, 1960. Untersuchen über die biochemischen Grundlagen der Konvulsiven Wirkung von Hydraziden. Naunyn-Schmiedberg’s Archive für Experimentelle Pathologie und Pharmakologie (Berlin) 239:550–552.Google Scholar
  26. 26.
    Buchel, L., A. Debay, J. Levy et O. Tanguy, 1961. Conditions de la sensibilisation des Rongeurs, par des hydrazides, a la crise convulsive audiogene. Etude des substances protectrices. Therapie 16:729–742.PubMedGoogle Scholar
  27. 27.
    Lehmann, A., 1963. Action des hydrazides convulsivants sur l’épilepsie acoustique dite crise audiogène de la souris. Journal de Physiologie (Paris) 55:282–283.Google Scholar
  28. 28.
    Ballantine, E., 1963. The effect of gamma-amino-butyric acid on audiogenic seizures. In : R.G. Bushnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogene, Editions du Ç.N.R.S., Paris, pp. 447–450.Google Scholar
  29. 29.
    Ginsburg, B.E., 1963. Causal mechanisms in audiogenic seizures. In : R.G. Busnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogene, Editions du C.N.R.S., Paris, pp. 228–237.Google Scholar
  30. 30.
    Lehmann, A., 1963. L’acide gamma-amino-butyrique est-il un inhibiteur du système nerveux central. Convulsions et acide gamma-amino-butyrique. Therapie 18:1509–1523.PubMedGoogle Scholar
  31. 31.
    Trifaro, J.M., E. Mikulio, H. Armendariz and V.G. Foglia, 1964. Accion del Acido gamma Aminobutirico (GABA) y de la Hidroxilamina sobre las convulsiones audiogenas del Raton. Acta Physiologica Latino-Americana 14:315–323.PubMedGoogle Scholar
  32. 32.
    Schlesinger, K., W. Boggan and D.X. Freedman, 1968. Genetic of audiogenic seizures. II-Effects of pharmacological manipulation of brain serotonin, norepinephrine and gamma amino butyric acid. Life Sciences 7, Part I :437–447.PubMedCrossRefGoogle Scholar
  33. 33.
    Simler, S., H. Randrianarisoa et A. Lehmann, 1968. Effets du di-n-propyl-acetate sur les crises audiogenes de la souris. Journal de Physiologie (Paris) 60, Suppl. 2:547.Google Scholar
  34. 34.
    Lehmann, A., S. Simler et P. Mandel, 1967. Protection contre les crises audiogenes de la souris par la nicotinamide. Journal de Physiologie (Paris) 59:446–447.Google Scholar
  35. 35.
    Mitchell, J.F. and V. Srinivasan, 1969. Release of 3H-gamma aminobutyric acid from the brain during synaptic inhibition. Nature 224:663–666.CrossRefGoogle Scholar
  36. 36.
    Ginsburg, B.E., S. Ross, M.J. Zamis and A. Perkins, 1950. An assay method for the behavioral effect of L-glutamic acid. Science 112:12–13.PubMedCrossRefGoogle Scholar
  37. 37.
    Ginsburg, B.E., S. Ross, M.J. Zamis and A. Perkins, 1951. Some effect of 1(+) glutamic acid on sound induced seizures in mice. Journal of Comparative and Physiological Psychology 44:134–141.PubMedCrossRefGoogle Scholar
  38. 38.
    Ginsburg, B.E. and E. Roberts, 1951. Glutamic acid and central nervous system activity. Anatomical Record 111:492–493.Google Scholar
  39. 39.
    Ginsburg, B.E. and J.L. Fuller, 1954. A comparison of chemical and mechanical alterations of seizure patterns in mice. Journal of Comparative and Physiological Psychology 47:344–348.PubMedCrossRefGoogle Scholar
  40. 40.
    Miller, D.S., B.E. Ginsburg and M.Z. Potas, 1955. The effect of glutamine and glutamic acid on audiogenic seizures in mice. Anatomical Record 122:438.Google Scholar
  41. 41.
    Iversen, L.L., 1967. The uptake and storage of noradrenaline in sympathetic nerves, University Press, Cambridge.Google Scholar
  42. 42.
    Page, I.H., 1958. Serotonin. Year Book Medical Publisher, Inc., Chicago.Google Scholar
  43. 43.
    Lehmann, A. et R.G. Busnel, 1963. Le métabolisme de la Sérotonine cérébrale dans ses rapports avec la crise audio-gène de la souris et ses variations sous 1Tinfluence de divers composés psychotropes. In : R.G. Busnel (Ed.), Psychophysiologie, Neuropharmacologie et Biochimie de la crise audiogène, Editions du C.N.R.S., Paris, pp. 453–468.Google Scholar
  44. 44.
    Langer, S.Z., 1962. Convulsiones audiogenas. Thesis, Buenos-Aires.Google Scholar
  45. 45.
    Langer, S.Z., R. Epstein and V.G. Foglia, 1962. Comparacion de las acciones de la reserpina y la guanetidina sobre las convulsiones audiogenas. Revista de la Sociedad Argentina de Biologie (Buenos Aires) 38:45–49.Google Scholar
  46. 46.
    Trifaro, J.M., S.Z. Langer, A. Gallo and V.G. Foglia, 1962. Estudio Farmacodinamico de las Respuestas Audiogenas mortales en el Raton. Actas de las II sesiones de Biologia, Univ. Nac. Cordoba, Argentina, p. 97.Google Scholar
  47. 47.
    Bielec, S. 1959. Influence of reserpine on the behavior of mice susceptible to audiogenic seizures. Archives Internationales de Pharmacodynamie et de Therapie 119:352–357.PubMedGoogle Scholar
  48. 48.
    Lehmann, A., 1964. Contribution à l’étude psychophysiologique et neuropharmacologique de l’épilepsie acoustique de la Souris et du Rat. Ph.D. Thesis, Agressologie 5:211–221 et 311–347.Google Scholar
  49. 49.
    Busnel, R.G. et A. Lehmann, 1960. Nouvelles données pharma-codynamiques relatives a la crise audiogène de la Souris. Journal de Physiologie (Paris) 52:37–38.Google Scholar
  50. 50.
    Lehmann, A., 1968. Modification de l’intensité de la crise audiogene par des substances actives sur le métabolisme des amines biogènes du cerveau de souris. Compte Rendu Société Biologie (Paris) 162:24–27.Google Scholar
  51. 51.
    Lehmann, A., 1965. Rapports entre le taux cérébral de noradrénaline et la léthalité au cours de la crise d’épilepsie acoustique de la Souris. Journal de Physiologie (Paris) 57: 646–647.Google Scholar
  52. 52.
    Lehmann, A., 1969. Relationship between sympathetic ganglion activity and audiogenic seizure in mice. Life Sciences (in press).Google Scholar
  53. 53.
    Golberg, L.I., 1964. Monoamine Oxidase Inhibitors — Adverse reactions and possible mechanisms. Journal American Medical Association 190:456–462.CrossRefGoogle Scholar
  54. 54.
    Lehmann, A. and R.G. Busnel, 1962. A new test for detecting MAO-inhibitor effects. International Journal of Neuropharmacology 1:61–70.CrossRefGoogle Scholar
  55. 55.
    Plotnikoff, N.P., J. Huang and P. Havens, 1963. Effect of monoamine-oxidase inhibitors on audiogenic seizures. Journal of Pharmaceutical Science 52:172–173.CrossRefGoogle Scholar
  56. 56.
    Langer, S.Z., J.M. Trifaro, A. Gallo and V.G. Foglia, 1962. Estudio comparativo de las acciones de la feniprazine y el imipramine sobre las convulsiones audiogenas. Revista de la Sociedad Argentina de Biologia (Buenos Aires) 38:84–89.Google Scholar
  57. 57.
    Lehmann, A., 1967. Audiogenic seizures data in mice, supporting new theories of biogenic amines mechanisms in the central nervous system. Life Sciences 6, pt. I : 1423–1431.PubMedCrossRefGoogle Scholar
  58. 58.
    Le Douarec, J.C., H. Schmitt et M. Laubie, 1966. Etude pharmacologique de la fenfluramine et de ses isomeres optiques. Archives Internationales de Pharmacodynamie et de Therapie 161:206–232.PubMedGoogle Scholar
  59. 59.
    Frings, H. and A. Kivert, 1953. Nicotine facilitation of audiogenic seizures in laboratory mice. Journal of Mammalogy 34:391–393.Google Scholar
  60. 60.
    Burn, J.H. and M.J. Rand, 1965. Acetylcholine in adrenergic transmission. Annual Review of Pharmacology 5:163–182.CrossRefGoogle Scholar
  61. 61.
    Lehmann, A., 1965. Action de crises répétées d’épilepsie acoustique sur le taux de noradrenaline des zones corticales et sous-corticales du cerveau de Souris. Compte Rendu Société Biologie (Paris) 159:62–64.Google Scholar
  62. 62.
    Welch, A. and B.L. Welch, 1968. Reduction of norepinephrine in the lower brainstem by psychological stimulus. Proceedings of the National Academy of Sciences, U.S.A., 60:478–481.CrossRefGoogle Scholar
  63. 63.
    Thierry, A.M., F. Javoy, J. Glowinski and S.S. Kety, 1968. Effects of stress on the metabolism of norepinephrine, dopamine and serotonin in the central nervous system of the rat. I-Modifications of norepinephrine turnover. Journal of Pharmacology and Experimental Therapeutics 163:163–171.PubMedGoogle Scholar
  64. 64.
    Bliss, E.L. and J. Zwanziger, 1966. Brain amines and emotional stress. Journal of Psychiatric Research 4:189–198.PubMedCrossRefGoogle Scholar
  65. 65.
    Leduc, J., 1961. Catecholamine production and release in exposure and acclimatation to cold. Acta Physiologie Scandinavia 53: Suppl. 183.Google Scholar
  66. 66.
    Oliviero, A. and L. Stjarne, 1965. Acceleration of noradrenaline turnover in the mouse heart by cold exposure. Life Sciences 4:2339–2343.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1970

Authors and Affiliations

  • Alice G. Lehmann
    • 1
  1. 1.Laboratoire de Physiologie AcoustiqueJouy-en-JosasFrance

Personalised recommendations