Water and Electrolytes in Malnourished and Uremic Children

  • Gaston Zilleruelo
  • José Strauss


The following review presents general concepts about water and electrolyte homeostasis, with particular emphasis on malnourished children and children with chronic renal failure.


Anorexia Nervosa Chronic Renal Failure Total Body Water Distal Tubule Urine Osmolarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alleyne, G.A.: The effect of severe protein calorie malnutrition on the renal function of Jamaican children. Pediatrics 39: 400, 1967.PubMedGoogle Scholar
  2. 2.
    Gordillo, G., Soto, R.A., Metcoff, J. et al.: Intracellular composition and homeostatic mechanisms in severe chronic infantile malnutrition. III. Renal adjustments. Pediatrics 20: 303, 1957.PubMedGoogle Scholar
  3. 3.
    Klahr, S., Tripathy, K., Garcia, F.T. et al.: On the nature of the renal concentrating defect in malnutrition. Am. J. Med. 43: 84, 1967.PubMedCrossRefGoogle Scholar
  4. 4.
    Cardenas, J., Puga, F. and Zilleruelo, G.: Capacidad de con-centracion urinaria en lactantes desnutridos. I Parte. Rev. Chilena Ped. 45: 199, 1974.Google Scholar
  5. 5.
    Cardenas, J., Puga, F. and Zilleruelo, G.: Capacidad de concentracion urinaria en lactantes desnutridos. II Parte. Rev. Chilena Ped. 45: 205, 1974.Google Scholar
  6. 6.
    Waterlow, J.C. and Alleyne, G.A.: Protein malnutrition in children. Adv. Protein Chem. 25: 117, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Metcoff, J., Janeway, C.A., Gamble, J.L. et al.: Hypotonicity and intracellular edema in severe chronic malnutrition with recurrent diarrhea. Am. J. Dis. Child. 92: 462, 1956.Google Scholar
  8. 8.
    Meteoff, J., Frank, S., Gordillo, G. et al.: Intracellular composition and homeostatic mechanisms in severe chronic infantile malnutrition. IV. Development and repair of the biochemical lesion. Pediatrics 20: 317, 1957.Google Scholar
  9. 9.
    Macaron, C., Schneider, G. and Ertel, N.H.: The starved kidney: A defect in renal concentrating ability. Metabolism 24: 457, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Rubini, M.: Water excretion in potassium-deficient man. J. Clin. Invest. 40: 2215, 1961.PubMedCrossRefGoogle Scholar
  11. 11.
    Buckalew, V.M., Ramirez, M.A. and Goldberg, M. : Free water reabsorption during solute diuresis in normal and potassium depleted rats. Am. J. Physiol. 212: 381, 1967.PubMedGoogle Scholar
  12. 12.
    Finkelstein, F.O. and Hayslett, J.P.: Role of medullary Na-K-ATPase in renal potassium adaptation. Am. J. Physiol. 229: 524, 1975.PubMedGoogle Scholar
  13. 13.
    Beck, N., Reed, S.W. and Davis, B.B.: Inability to concentrate urine in potassium depleted kidney due to impaired cyclic AMP system in renal medulla. In Proceedings of American Society of Nephrology. Washington, D.C., 1973, p. 9.Google Scholar
  14. 14.
    Kunan, R.T. and Stein, J.H.: Disorders of hypo- and hyperkalemia. Clin. Nephrol. 7: 173, 1977.Google Scholar
  15. 15.
    Levinsky, N.G., Berliner, R.W. and Preston, A.S.: The role of urea in the urine concentrating mechanism. J. Clin. Invest. 38: 751, 1959.Google Scholar
  16. 16.
    McCance, R.A., Crowne, R.S. and Hall, T.S.: The effect of malnutrition and food habits on the concentrating power of the kidney. Clin. Sci. 37: 471, 1969.PubMedGoogle Scholar
  17. 17.
    Fohlin, L.: Body composition, cardiovascular and renal function in adolescent patients with anorexia nervosa. Acta Pediatr. Scand. (Suppl.) 268, 1977.Google Scholar
  18. 18.
    Aperia, A., Broberger, O. and Fohlin, L.: Renal function in anorexia nervosa. Acta Pediatr. Scand. 67: 219, 1978.CrossRefGoogle Scholar
  19. 19.
    Coles, G.A.: Body composition in chronic renal failure. Qtr. J. Med. 41: 25, 1972.Google Scholar
  20. 20.
    Berlyne, G.M., Van Laethem, L. and Ben Ari, J.: Exchangeable potassium and renal potassium handling in advanced chronic renal failure in man. Nephron 8: 264, 1971.PubMedCrossRefGoogle Scholar
  21. 21.
    Coles, G.A., Peters, D.K. and Jones, J.H.: Albumin metabolism in chronic renal failure. Clin. Sci. 39: 423, 1970.PubMedGoogle Scholar
  22. 22.
    Boddy, K., King, P.C., Lindsay, R.M. et al.: Total body potassium in nondialyzed and dialyzed patients with chronic renal failure. Br. Med. J. 1: 771, 1972.PubMedCrossRefGoogle Scholar
  23. 23.
    Blaufox, M.D., Lewis, E.J., Jagger, P. et al.: Physiologic responses of the transplanted human kidney. Sodium regulation and renin secretion. N. Engl. J. Med. 280: 62, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Platt, R. : Structural and functional adaptation in renal failure. Br. Med. J. 1: 1313, 1952.PubMedCrossRefGoogle Scholar
  25. 25.
    DeWardener, I.E.: Polyuria. In Black, D.A.K. (ed.): Renal Diseases. Oxford: Blackwell Scientific Publications, 1962, p. 566.Google Scholar
  26. 26.
    Tannen, R.L., Regal, E.N., Dunn, M.J. et al.: Vasopressin-resistant hyposthenuria in advanced chronic renal disease. N. Engl. J. Med. 280: 1135, 1969.PubMedCrossRefGoogle Scholar
  27. 27.
    Platt, R.: Sodium and potassium excretion in chronic renal failure. Clin. Sci. 9: 367, 1950.Google Scholar
  28. 28.
    Bricker, N.S., Fine, L.G., Kaplan, M. et al.: “Magnification phenomenon” in chronic renal disease. N. Engl. J. Med. 299: 1287, 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Bricker, N.S. and Fine, L.G.: The trade-off hypothesis: Current status. Kidney Int. 13 (Suppl. 8) s-5, 1978.Google Scholar
  30. 30.
    Bricker, N.S., Schmidt, R.W., Favre, H. et al.: On the biology of sodium excretion: The search for a natriuretic hormone. Yale J. Biol. Med. 48: 293, 1975.PubMedGoogle Scholar
  31. 31.
    Fine, L.G. and Danovitch, G.M.: Physiological adaptations in uremia: Recent advances in the understanding of sodium homeostasis in chronic renal failure. In Strauss, J. (ed.): Pediatric Nephrology: Renal Failure. New York: Garland STPM Press, 1978, vol. 4, p. 123.Google Scholar
  32. 32.
    Danovitch, G.M., Bourgoignie, J. and Bricker, N.S.: Reversibility of the “salt losing” tendency of chronic renal failure. N. Engl. J. Med. 1: 14, 1977.CrossRefGoogle Scholar
  33. 33.
    Schrier, R.W. and Regal, E.M.: Influence of aldosterone on sodium, water and potassium metabolism in chronic renal disease. Kidney Int. 1: 156, 1972.PubMedCrossRefGoogle Scholar
  34. 34.
    Hayes, C.P., McLeod, M.F. and Robinson, R.R.: An extrarenal mechanism for the maintenance of potassium balance in severe chronic renal failure. Trans. Assoc. Am. Phys. 80: 207, 1967.PubMedGoogle Scholar
  35. 35.
    Letteri, J.M., Ellis, K.J., Asad, S.N. et al.: Serial measurement of total body potassium in chronic renal disease. Am. J. Clin. Nutr. 31: 1937, 1978.PubMedGoogle Scholar
  36. 36.
    Boddy, K., King, P.C., Lindsay, R.M. et al.: Exchangeable and total body potassium in patients with chronic renal failure. Br. Med. J. 1: 140, 1972.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Gaston Zilleruelo
    • 1
  • José Strauss
    • 1
  1. 1.Div. Pediatr. Nephrol., Dept. Pediatr.Univ. Miami Sch. Med.MiamiUSA

Personalised recommendations