Neuropeptidergic Pathways as Possible Targets for the Development of New Therapeutic Agents

  • Bernard P. Roques
Part of the Biochemical Endocrinology book series (BIOEND)


In the central nervous system, neuropeptides such as the enkephalins, CCK, SP, etc... behave both as classical neurotransmitters, interacting with post-synaptic receptors to ensure the transmission of the nerve impulse and as neuromodulators, acting presynaptically to modulate the release of various effectors (monoamines or peptides) (Review in ref. 1). As illustrated by CCK and DA in the mesolimbic pathway, neuropeptides are also able to modify the threshold of the physiological responses induced by the colocalized neurotransmitter (Review in ref. 2). Furthermore, the interruption of the responses induced by the interaction of neuropeptides with various receptors types is ensured by more or less specific peptidases which cleave the native peptide into inactive fragments (Review in ref. 3).


Nucleus Accumbens Opioid Receptor Opioid Peptide Neutral Endopeptidase Delta Opioid Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Hughes, Ed. in Opioid Peptides, Br. Med. Bull, 39:1 (1983).PubMedGoogle Scholar
  2. 2.
    T. Hokfelt, V.R. Holets, W. Staines, B. Meister, T. Melander, M. Schalling, M. Schultzberg, J. Freedman, H. Bjorklund, L. Olson, B. Lindh, L.G. Elfvin, J.M. Lundberg, J. A. Lindren, B. Samuelsson, B. Pernow, L. Terenius, C. Post, B. Everitt and M. Goldstein, Coexistence of neuronal messengers: an overview, in “Progress in Brain Research”, T. Hökfelt, K. Fuxe and B. Pernow, Eds, Elsevier Science Publishers, vol 68, p.33 (1986).Google Scholar
  3. 3.
    B.P. Roques and M.C. Fournié-Zaluskl, Enkephalin degrading enzyme inhibitors: a physiological way to new analgesics and psyychoactive agents, in “NIDA Research Monograph Series 70, Opioid Peptides: Molecular Pharmacology, Biosynthesis and Analysis”, R.S. Rapaka and R.L. Hawks, eds, p.128 (1986).Google Scholar
  4. 4.
    J.M. Zajac, G. Gacel, P. Dodey, J.L. Morgat, P. Chaillet, J. Costentin and B.P. Roques, Deltakephalin, Tyr-D-Thr-Gly-Phe-Leu-Thr: a new highly potent and fully specific agonist for opiate δ-receptors, Biochem. Biophys. Res. Commun., 111:390 (1983).PubMedCrossRefGoogle Scholar
  5. 5.
    R.R. Bott and D.R. Davies, Pepstatin binding to rhizopus chinensis aspartyl proteinase, in: “Peptides, Structure and Function”, V.J. Hruby and D.H. Rich, eds., Pierce Chemical Company, Rockford, Illinois, p.531 (1983).Google Scholar
  6. 6.
    I. Ghosh and V.S.R. Rao, A conformational approach to the study of the dynamics of enzyme inhibition: studies on thermolysin, Int. J. Biol. Macromol., 4:130 (1982).CrossRefGoogle Scholar
  7. 7.
    P. Roy, M. Delepierre, M. Wagnon, D. Nisato and B.P. Roques, Conformational analysis of pepstatine and related renin inhibitors by 400 MHz 1H NMR spectroscopy, Int. Pept. Prot. Res., 30:44 (1987).CrossRefGoogle Scholar
  8. 8.
    C.S. Craik, W.J. Rutter and R. Fletterick, Splice junctions: association with variation in protein structure, Science, 220:1125 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    I.A. Wilson, D.H. Haff, E.D. Getzoff, J.A. Trainer, R.A. Lerwer and S. Brenner, Identical short peptide sequences in unrelated proteins can have different conformations: a testing ground for theories of immune recognition, Proc. Natl. Acad. Sci. USA, 82:5255 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    A.B. Schreiber, P.O. Couraud, C. André, B. Vray and A.D. Strosberg, Anti-alprenolol anti-idiotypic antibodies bind to β-adrenergie receptors and modulate catecholamine-sensitive adenylate cyclase, Proc. Natl. Acad. Sci., 77:7385 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    J.Y. Couraud, E. Escher, D. Regoli, V. Imboff, B. Rossignol and P. Pradelles, Anti-substance P anti-idiotypic antibodies, J. Biol. Chenu, 260:9461 (1985).Google Scholar
  12. 12.
    R.J. Massey, Catalytic antibodies catching on, Nature, 328:457 (1987).CrossRefGoogle Scholar
  13. 13.
    A.S.V. Burgen, G.C.K. Roberts and J. Feeney, Binding of flexible ligands to macromolecules, Nature, 253:753 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    B. Maigret, M.C. Fournié-Zaluski, S. Prémilat and B.P. Roques, Proposals for the μ-active conformation of the enkephalin analog Tyr-cyclo(NY-D-A2-bu-Gly-Phe-Leu) Mol. Pharmacol., 29:314 (1986).PubMedGoogle Scholar
  15. 15.
    B.P. Roques, C. Garbay-Jaureguiberry, R. Oberlin, M. Anteunis and A.K. Lala, Conformation of the endogenous opiate-like pentapeptide Met-enkephalin determined by high field PMR spectroscopy, Nature, 262:778 (1976).PubMedCrossRefGoogle Scholar
  16. 16.
    M.C. Fournié-Zaluski, J. Belleney, B. Lux, C. Durieux, D. Gérard, G. Gacel, B. Maigret and B.P. Roques, Conformational analysis of neuronal cholecystokinin CCK26–33 and related fragments by 1H NMR spectroscopy, fluorescence transfer measurements and calculations, Biochemistry, 25:3778 (1986).PubMedCrossRefGoogle Scholar
  17. 17.
    S.J. Paterson, L.E. Robson and H.W. Kosterlitz, Opioid Receptors, in: “The Peptides, Analysis, Synthesis, Biology”, Udenfried S. and Meienhofer, J., ’Eds, Academic Press, London, Vol. 6, p. 147 (1984).Google Scholar
  18. 18.
    T. Ishida, M. Kenmotsu, Y. Mino, M. Inoue, T. Fujiwara, K. Toraita, T. Kimura and S. Sakakibara, X-ray diffraction studies of enkephalins. Crystal structure of [(4′-bromo Phe4, Leu5]enkephalin, Biochem. J., 218:677 (1984).Google Scholar
  19. 19.
    M.C. Fournié-Zaluski, G. Gacel, B. Maigret, S. Prémilat and B.P. Roques, Structural requirements for specific recognition of μ or δ opiate-receptors, Mol. Pharmacol., 20:484 (1981).PubMedGoogle Scholar
  20. 20.
    B.P. Rpques, G. Gacel, M.C. Fournié-Zaluski, B. Senault and J.M. Lecomte, Demonstration of the crucial role of the phenylalanine moiety in enkephalin analogues for the differential recognition of the μ and δ receptors, Eur. J. Pharmacol., 60:109 (1979).CrossRefGoogle Scholar
  21. 21.
    P.W. Schiller, Conformational analysis of enkephalin and conformation-activity relationships, in: “The Peptides: Analysis, Synthesis, Biology”, S. Udenfried and J. Meienhofer, Eds, Academic Press, Vol 6, 219 (1984).Google Scholar
  22. 22.
    B.K. Handa, A.C. Lane, J.A.H. Lord, B.A. Morgan, M.T. Rance and C.F.C. Smith, Analogues of beta-LPH6l-64 possessing selective agonist activity at mu-opiate receptors, Eur. J. Pharmacol., 70:531 (1982).CrossRefGoogle Scholar
  23. 23.
    B.P. Roques, Pharmacologie des différentes classes de récepteurs Opioides cérébraux, Annales d’Endocrinologie, 47:88 (1986).PubMedGoogle Scholar
  24. 24.
    H.T. Mosberg, R. Hurst, V.J. Hruby, K. Gee, M.J. Yamamura, J.J. Gillian and J.F. Burks, Bis-penicillamine enkephalins possess highly improved specificity toward ô opioid receptors, Proc. Natl. Acad. Sci., 80:5871 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    P. Delay-Goyet, J.M. Zajac, P. Rigaudy, B. Foucaud and B.P. Roques, Comparative binding properties of linear and cyclic δ-slective enkephalin analogues: [3H]-[D-Thr2, Leu5] enkephalyl-Thr6 and [3H]-D-Pen2-D-Pen5] enkephalin, FEBS Lett., 183:499 (1985).CrossRefGoogle Scholar
  26. 26.
    P. Delay-Goyet, C. Seguin, V. Daugé, G. Calenco, J.L. Morgat, G. Gacel and B.P. Roques, [3H]DSTBULET, a new linear hexapeptide with both an improved selectivity and a high affinity for Ô-opioid receptors, in “NIDA Research Monograph, Series 75, Progress in Opioid Research”, p. 197 (1987).Google Scholar
  27. 27.
    J.T. Pelton, W. Kazmierski, K. Gulya, H. Yamamura and V.J. Hruby, Design and synthesis of conformationally constrained somatostatin analogues with high potency and specificity for μ opioid receptors, J. Med. Chem., 29:2370 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    R. Cotton, M.G. Gilles, L. Miller, J.S. Shaw and D. Timms, ICI 174.864: a highly selective antagonist for the opioid δ receptors, Eur. J. Pharmacol., 97:331 (1984).PubMedCrossRefGoogle Scholar
  29. 29.
    J.M. Zajac and B.P. Roques, Differences in binding properties of μ and δ opioid receptor subtypes from rat brain: kinetic analysis and effects of ions and nucleotides, J. Neurochem., 44:1605 (1985).PubMedCrossRefGoogle Scholar
  30. 30.
    R. Quirion, J.M. Zajac, J.L. Morgat and B.P. Roques, Autoradiographic distribution of mu and delta opiate receptors in rat brain using highly selective ligands, Life Sci., 33:227 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Delay-Goyet, J.M. Zajac, F. Javoy-Agid, Y. Agid and B.P. Roques, Regional distribution of μ, δ and κ opioid receptors in human brain from controls and parkinsonian subjects, Brain Res., 414:8 (1987).PubMedCrossRefGoogle Scholar
  32. 32.
    P. Delay-Goyet, V. Kayser, G. Guilbaud and B.P. Roques, Lack of changes in both neutral endopeptidase “enkephalinase” and in μ and δ opioid receptors in arthritic rats, in preparation.Google Scholar
  33. 33.
    J.D. Belluzi, N. Grant, V. Garsky, D. Sarantakis, C.D. Wise and L. Stein, Analgesia induced in vivo by central administration of enkephalin in rat, Nature, 260:625 (1976).CrossRefGoogle Scholar
  34. 34.
    B. Malfroy, J.P. Swerts, A. Guyon, B.P. Roques and J.C. Schwartz, High-affinity enkephalin-degrading peptidase in mouse brain and its enhanced activity following morphine, Nature, 276:523 (1978).PubMedCrossRefGoogle Scholar
  35. 35.
    M.A. Kerr and A.J. Kenny, The purification and specificity of a neutral endopeptidase from rabbit kidney brush border, Biochem. J., 137:477 (1974).PubMedGoogle Scholar
  36. 36.
    A.F. Monzingo and B.W. Matthews, Structure of a mercaptan-thermolysin complex illustrates mode of inhibition of zinc proteases by substrate-analogue mercaptans, Biochemistry, 21:3390 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    B.P. Roques, M.C. Fournié-Zaluski, E. Soroca, J.M. Lecomte, B. Malfroy, C., Llorens and J.C. Schwartz, The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice, Nature, 288:286 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    B.P. Roques, E. Lucas-Soroca, P. Chaillet, J. Costentin and M.C. Fournié-Zaluski, Complete differentiation between “enkephalinase” and angiotensin converting enzyme inhibition by retro-thiorphan, Proc. Natl. Acad. Sci. USA, 80:3178 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Benchetritt, M.C. Fournié-Zaluski and B.P. Roques, Relationship between the inhibitory potencies of thiorphan and retro-thiorphan enantiomers on thermolysin and neutral endopeptidase 24.11, Biochem. Biophys. Res. Commun., 147:1034 (1987).CrossRefGoogle Scholar
  40. 40.
    A. Devault, C. Lazure, C. Nault, H. Le Moual, N.G. Seidah, M. Chretien, P. Kahn, J. Powell, J. Mallet, A. Beaumont, B.P. Roques, P. Crine and G. Boileau, Aminoacid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA, EMBQ J., 6:1317 (1987).Google Scholar
  41. 41.
    T. Benchetrit, J.P. Mornon, A. Devault, G. Boileau, P. Crine and B.P. Roques, Prediction of the structural analogy between two Zn-metallopeptidases, the mammalian neutral endopeptidase 24.11 “enkephalinase” and the bacterial thermolysin through clustering analysis, Biochemistry, in press.Google Scholar
  42. 42.
    A. Beaumont and B.P. Roques, Presence of a Histidine at the active site of the neutral endopeptidase-24.11, Biochem. Biophys. Res. Commun., 139:733 (1986).PubMedCrossRefGoogle Scholar
  43. 43.
    M.C. Fournié-Zaluski, A. Coulaud, R. Bouboutou, P. Chaillet, J. Devin, G. Waksman, J. Costentin and B.P. Roques, New bidentates as full inhibitors of enkephalin degrading enzymes: synthesis and analgesic properties, J. Med. Chem., 1985, 28, 1158.PubMedCrossRefGoogle Scholar
  44. 44.
    G. Waksman, R. Bouboutou, J. Devin, S. Bourgoin, F. Cesselin, M. Hamon, M.C. Fournié-Zaluski and B.P. Roques, In vitro and in vivo effects of kelatorphan on enkephalin metabolism in rodent brain, Eur. J. Pharmacol., 117:233 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    S. Bourgoin, D. Le Bars, F. Artaud, A.M. Clot, R. Bouboutou, M.C. Fournié-Zaluski, B.P. Roques, M. Hamon and F. Cesselin, Effects of kelatorphan and other peptidase inhibitors on the in vitro and in vivo release of met-enkephalin-like material from the rat spinal cord, J. Pharmacol. Exp. Ther., 238:360 (1986).PubMedGoogle Scholar
  46. 46.
    G. Waksman, E. Hamel, M.C. Fournié-Zaluski and B.P. Roques, Comparative distribution of the neutral endopeptidase “enkephalinase” and mu and delta opioid receptors in rat brain by autoradiography, Proc. Natl. Acad. Sci., 83:1523 (1986).PubMedCrossRefGoogle Scholar
  47. 47.
    R. Matsas, A.J. Kenny and A.J. Turner, An immunohistochemical study of endopeptidase-24.11 (“enkephalinase”) in the pig nervous system, Neuroscience, 18:991 (1986).PubMedCrossRefGoogle Scholar
  48. 48.
    G. Waksman, E. Hamel, P. Delay-Goyet and B.P. Roques, Neuronal localization of the neutral endopeptidase “enkephalinase” in rat brain revealed by lesions and autoradiography, EMBQ J., 5:3163 (1986).Google Scholar
  49. 49.
    M.C. Fournié-Zaluski, P. Chaillet, R. Bouboutou, A. Coulaud, P. Chérot, G. Waksman, J. Costentin and B.P. Roques, Analgesic effects of kelatorphan, a new highly potent inhibitor or multiple enkephalin degrading enzymes, Eur. J. Pharmacol., 102:525 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    A.H. Dickenson, A.F. Sullivan, M.C. Fournié-Zaluski and B.P. Roques, Prevention of degradation of endogenous enkephalins produces inhibition of nociceptive neurones in rat spinal cord, Brain Res., 408:185 (1987).PubMedCrossRefGoogle Scholar
  51. 51.
    A.H. Dickenson, A. Sullivan, C. Feeney, M.C. Fournié-Zaluski and B.P. Roques, Evidence that endogenous enkephalins produce δ-opiate receptor mediated neuroanal inhibitions in rat dorsal horn, Neurosci. Lett., 72:179 (1986).PubMedCrossRefGoogle Scholar
  52. 52.
    V. Kayser, M.C. Fournié-Zaluski, B.P. Roques and G. Guilbaud, Increased analgesic efficiency of endogenous enkephalins protected from degratation by kelatorphan in arthritic rats, Brain Res., in press.Google Scholar
  53. 53.
    M.P. Morin-Surun, G. Gacel, J. Champagnat, M. Denavit-Saubié and B.P. Roques, Pharmacological identification of delta and mu opiate receptors on bulbar respiratory neurons, Eur. J. Pharmacol., 98:241 (1984).PubMedCrossRefGoogle Scholar
  54. 54.
    P. Chaillet, A. Coulaud, J.M. Zajac, M.C. Fournié-Zaluski, J. Costentin and B.P. Roques, The mu rather than the delta subtype of opioid receptors appears to be involved in enkephalin induced analgesia, Eur. J. Pharmacol., 101:83 (1984).PubMedCrossRefGoogle Scholar
  55. 55.
    V. Daugé, F. Petit, P. Rossignol and B.P. Roques, Use of μ and δ opioid peptides of various selectivity gives further evidence for specific involvement of μ opioid receptors in supraspinal analgesia (tail flick test), Eur. J. Pharmacol., 141:171 (1987).PubMedCrossRefGoogle Scholar
  56. 56.
    F.G. Fang, H.L. Fields and N.M. Lee, Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates, J. Pharm. Exp. Ther., 238:1039 (1986).Google Scholar
  57. 57.
    A.H. Dickenson, A.F. Sullivan, R. Know, J.M. Zajac and B.P. Roques, Opioid receptor subtypes in the rat spinal cord: electrophysiological studies with μ and δ opioid receptor agonists in the control of nociception, Brain Res., 413:36 (1987).PubMedCrossRefGoogle Scholar
  58. 58.
    L. Stinus, G.F. Koob, N. Ling, F.E. Bloom and M. Le Moal, Locomotor activation induced by infusion of endorphins into the ventral tegmental area: evidence for opiate-dopamine interactions, Proc. Natl. Acad. Sci. USA, 77:2323 (1980).PubMedCrossRefGoogle Scholar
  59. 59.
    P.W. Kalivas, E. Winderlow, D. Stanley, G. Breese and A.J. Prange, Jr, Enkephalin action on the mesolimbic system: a dopamine-dependent and a dopamine-independent increase in locomotor activity, J. Pharmac. Exp. Ther., 227:229 (1983).Google Scholar
  60. 60.
    P.N. Kalivas and R. Richarson-Carlson, Endogenous enkephalin modulation of dopamine neurons in ventral tegmental area, Am. J. Physiol., 251:R243 (1986).PubMedGoogle Scholar
  61. 61.
    V. Daugé, P. Rossignol and B.P. Roques, Comparison of the behavioural effects induced by administration in rat nucleus accumbens or nucleus caudatus of selective μ and δ opioid peptides or kelatorphan, an inhibitor of enkephalin-metabolism, J. Psychopharmacology, in press.Google Scholar
  62. 62.
    L. Stinus, D. Nadaud, J. Jauregui and A.E. Kelley, Chronic treatment with five different neuroleptics elicits behavioral supersensitivity to opiate infusion into the nucleus accumbens, Biol. Psychiatry, 21:34 (1986).PubMedCrossRefGoogle Scholar
  63. 63.
    B.P. Roques, V. Daugé, G. Gacel and M.C. Fournié-Zaluski, Selective agonists and antagonists of delta opioid receptors and inhibitors of enkephalins metabolism. Potential use in treatment of mental illness, in “Biological Psychiatry, Developments in Psychiatry”, C. Shagass, R.C. Josiassen, W.H. Bridger, K.J. Weiss, D. Stoff and, G.M. Simpon, Eds, Elsevier New-York, vol 7, p.287 (1985).Google Scholar
  64. 64.
    F. Petit, M. Hamon, M.C. Fournié-Zaluski, B.P. Roques and J. Glowinski, Delta-opiate receptors in the rat striatum but not in the nucleus accumbens are involved in the presynaptic regulation of newly synthetized dopamine release, Eur. J. Pharmacol., 126:1 (1986).PubMedCrossRefGoogle Scholar
  65. 65.
    W. Scott Young III, T.I. Bonner and M.R. Brann, Mesencephalic dopamineneurons regulate the expression of neuropeptide mRNAs in the rat forebrain, Proc. Natl. Acad. Sci. USA, 83:9827 (1986).PubMedCrossRefGoogle Scholar
  66. 66.
    R.C.A. Frederickson, Animal and human analgesic studies of metkephamid, in “Adv. in Pain Res. and Ther.”, K.M. Foley and C.E. Inturissi, Eds, Raven Press, New-York, 1986, vol 8, p.293.Google Scholar
  67. 67.
    J.J. Williams, J.C. MacDonald, R.A. North and B.P. Roques, Potentiation of enkephalin action by peptidase inhibitors in rat locus coeruleus in vitro, J. Pharm. Exp. Ther., 1987, in press.Google Scholar
  68. 68.
    P.W. Kalivas, R. Richardson-Carlson and G. Van Orden, Cross-sensitization between foot shock stress and enkephalin-induced motor activity, Biol. Psychiatry, 21:939 (1986).PubMedCrossRefGoogle Scholar
  69. 69.
    A.J. Mac Lennan and S.F. Mayer, Coping and the stress-induced potentiation of stimulant stereotypy in the rat, Science, 219:1091 (1983).CrossRefGoogle Scholar
  70. 70.
    A.C. Cuello, Central distribution of opioid peptides, Br. Med. Bull., 39:11 (1983).PubMedGoogle Scholar
  71. 71.
    Y. Agid and F. Javoy-Agid, Peptides and Parkinson’s disease, Trends in Neurosci., 8:30 (1985).CrossRefGoogle Scholar
  72. 72.
    D. Römer, H.H. Büscher, R.C. Hill, J. Pless, W. Bauer, F. Cardinaux, A. Closse, D. Hauser and R. Hughenin, A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity, Nature, 268:547 (1977).CrossRefGoogle Scholar
  73. 73.
    Y. Masu, K. Nakayama, H. Tamaki, Y. Harada, M. Xuno and S. Nakanishi, cDNA cloning of bovine substance-K receptor through oocyte expression system, Nature, 329:836 (1987).PubMedCrossRefGoogle Scholar
  74. 74.
    J. Belleney, B.P. Roques and M.C. Fournié-Zaluski, Comparison of conformational properties of linear and cyclic 6 selective opioid ligands DTLET (Tyr-D.Thr-Gly-Phe-Leu-Thr) and DPLPE (Tyr-c[D.Pen-Gly-Phe-Pen]) by 1H NMR spectroscopy, Int. Pep. Prot. Res., 30:356 (1987).CrossRefGoogle Scholar
  75. 75.
    G.H. Loew, L. Toll, F. Vyeno, A. Chang, A. Judd, J. Lawson, C. Keys, P. Amsterdam and W. Polgar, Mechanistic structure-activity studies of peptides and non peptide flexible opioids: an interdisciplinary approach, in “NIDA Research Monograph, series 69, Opioid Petides: Medicinal Chemistry”, R.S. Rapaka and R.L. Haws, eds, (1983).Google Scholar
  76. 76.
    E. Westhof, P. Dumas and D. Moras, Crystallographic refinement of yeast aspartic acid transfer RNA, J. Mol. Biol., 184:119 (1985).PubMedCrossRefGoogle Scholar
  77. 77.
    D.A. Matthews, J.T. Bolin, J.M. Burridge, D.J. Filman, K.W. Volz and J. Kraut, Dihydrofolate reductase, the sterochemistry of inhibitor selectivity, J. Biol. Chem., 260:392 (1985).PubMedGoogle Scholar
  78. 78.
    M.A. Ondetti, B. Rudin and D.W. Cushman, Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents, Science 196:441 (1977).PubMedCrossRefGoogle Scholar
  79. 79.
    A.N.M. Shoffelmeer, F. Hogenboom and A.H. Mulder, Inhibition of dopamine-sensitive adenylate cyclase by opioids: possible involvement of physically associated μ and δ-opioid receptors, Naunyn-Schmiedeberg’s Arch. Pharmacol. 335:278 (1987).Google Scholar
  80. 80.
    J.F. Mc Ginty, J. Kanamatsu, J. Obie, R.S. Dyer, C.L. Mitchell and J.S. Hong, Amygdaloid kindling increases enkephalin-like immunoreactivity but decrease dynorphin-A like immunoreactivity in rat hippocampus, Neurosci. Lett. 7:31 (1987).Google Scholar
  81. 81.
    T. Priestley, M.J. Turnbull and E. Wei, In vivo evidence for the selectivity of ICI 154.129 for the delta-opioid receptor, Neuropharmacology 24:107 (1985).PubMedCrossRefGoogle Scholar
  82. 82.
    A. Cowan, X.Z. Zhu, H.I. Mosberg, J.R. Omnaas and F. Porreca, Direct dependence studies in rats with agents selective for different types of opioid receptor, J. Pharmacol. Exp. Ther., in press.Google Scholar
  83. 83.
    P.M. Laduron; Axonal transport of receptors: coexistence with neurotransmitter and recycling, Biochem. Pharmacol. 33:897 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bernard P. Roques
    • 1
  1. 1.Chimie Organique, U 266 INSERM UA 498 CNRSUER des Sciences Pharmaceutiques et BiologiquesParisFrance

Personalised recommendations