Regulation of mRNA in Peptidergic Systems: Quantitative and In Situ Studies

  • Stanley J. Watson
  • Thomas G. Sherman
  • Martin K. Schafer
  • Paresh Patel
  • James P. Herman
  • Huda Akil
Part of the Biochemical Endocrinology book series (BIOEND)


Understanding the physiology of the brain is the ultimate goal of the neurosciences. A wide variety of tools are used In the attempt to delve into the biology of the CNS, included among them are such disparate tools as those used in anatomy, physiology, protein chemistry, and molecular genetics. On the face of it several of these methods give such different types of information that they would appear to be almost unrelated. Yet in the last few years it has become abundantly clear that the integration of these methods, at differing levels of discourse, has aided powerfully in our Increasing understanding of brain biochemistry, anatomy, and to some degree its functioning.


Glucocorticoid Receptor Corticotropin Release Factor Median Eminence Hippocampal Subfield Corticotropin Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoni, F.A., Palkovits, M., Makara, G.B., Linton, E.A., Powry, P.J., Kiss, J.Z., 1983, Immunoreactive corticotropin-releasing hormone (CRF) in the hypothalamo-infundibular tract, Neuroendocrin., 36:415.CrossRefGoogle Scholar
  2. Bloom, F.E., Battenberg, E.L.F., Rivier, J., and Vale, W., 1982, Corticotropin releasing factor (CRF) immunoreactive neurons and fibers in rat hypothalamus, Reg. Peptides, 4:43.CrossRefGoogle Scholar
  3. Bruhn, T.O., Plotsky, P.M., and Vale, W.W., 1984, Effect of paraventricular lesions on corticotropin-releasing factor-like immunoreactivity in the stalk-median eminence: Studies on the adrenocorticotropin response to ether stress and CRF, Endocrinol., 114:57.CrossRefGoogle Scholar
  4. Bugnon, C., Fellman, D., and Gouget, A., 1983, Changes in corticoliberin and vasopressin-like immunoreactivities in the zona externa of the median eminence in adrenalectomized rats. Immunocytochemical study, Neurosci. Lett., 37:43.PubMedCrossRefGoogle Scholar
  5. Burbach, J.P.H., De Hoop, M.J., Schmale, H., Richter, D., De Kloet, E.R., Ten Haaf, J.A., and De Wied, D., 1984, Differential responses to osmotic stress of vasopressin-neurophysin mRNA in hypothalamic nuclei, Neuroendocrin., 39:582.CrossRefGoogle Scholar
  6. Cummings, S., Elde, R., Ells, J., and Lindall, A., 1983, Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: An immunohistochemical study, J. Neurosci., 3:1355.PubMedGoogle Scholar
  7. Fischette, C.T., Komisaruk, B.R., Edinger, H.M., H.H., Siegel, A., 1980, Differential fornix ablations and the circadian rhythmicity of adrenal corticosteroid secretion, Brain Res., 195, 373.PubMedCrossRefGoogle Scholar
  8. Fuxe, K., Wikström, A.-C., Okret, S., Agnati, L.F., Härfstrand, A., Lu, Z.-Y., Granholm, L., Zoli, M., Vale, W., Gustafsson, J.-A, 1985, Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor, Endocrinology., 117:1803.PubMedCrossRefGoogle Scholar
  9. Gillies, G.E., Linton, E.A., and Lowry, P.E., 1982, Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin, Nature 299: 355–357.PubMedCrossRefGoogle Scholar
  10. Hökfelt, T., Fahrenkrug, J., Tatemoto, K., Mutt, V., Werner, S., Hultings, A.-L., Tereniuis, L., and Chang, K.J., 1983, The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: Possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion, Proc. Natl. Acad. Sci. USA, 80:895.PubMedCrossRefGoogle Scholar
  11. Jingami, H., Matsukura, S., Numa, S., Imura, H., 1985, Effects of adrenalectomy,and dexamethasone administration on the level of prepro-corticotropin-releasing factor messenger ribonucleic acid (mRNA) in the hypothalamus and adrenocorticotropin/beta-lipotropin precursor mRNA in the pituitary in rats, Endocrinology, 117:851.CrossRefGoogle Scholar
  12. Kiss, J.Z., Mezey, E., and Skirboll, L., 1984, Corticotropin-releasing factor-immunoreactive neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy, Proc. Natl. Acad. Sci. USA, 81:1854.PubMedCrossRefGoogle Scholar
  13. Magariños, A.M., Somoza, G., DeNicola, A.F., 1987, Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats, Horm. Metabol. Res., 19:105.CrossRefGoogle Scholar
  14. Majzoub, J.A., Rich, A., van Boom, J., and Habener, J.F., 1983, Vasopressin and oxytocin mRNA regulation in the rat assessed by hybridization with synthetic oligonucleotides, J. Biol. Chem., 258:4061.Google Scholar
  15. Makara, G.B., Stark, E., Kateszi, M., Palkovits, M., Rappay, G. 1981, Effects of paraventricular lesions on stimulated ACTH release and CRF in stalk-median eminence of rat. Am. J. Physiol., 240:E441.PubMedGoogle Scholar
  16. McEwen, B.S., Weiss, J.M., Schwartz, L.S., 1968, Selective retention of corticosterone by limbic structures in rat brain, Nature, 220:911.PubMedCrossRefGoogle Scholar
  17. Merchenthaler, I., Hynes, M.A., Vigh, S., Schally, A.V., and Petrusz, P., 1983, Immunocytochemical localization of corticotropin releasing factor in the rat spinal cord, Brain Res., 275:373.PubMedCrossRefGoogle Scholar
  18. Merchenthaler, I., Vigh, S., Petrusz, P., and Schally, A.V., 1983, The paraventriculo-infundibular corticotropin releasing factor CRF pathway as revealed by immunocytochemistry in long-term hypophysectomized or adrenalectomized rats, Reg. Peptides, 5:295.CrossRefGoogle Scholar
  19. Mezey, E., Reisine, T.D., Skirboll, L., Beinfeld, M., and Kiss, J.Z., 1985, Cholecystokinin in the medial parvocellular subdivision of the paraventricular nucleus, Ann. NY Acad. Sci, 448:152.PubMedCrossRefGoogle Scholar
  20. Pauli, W.K., and Gibbs, F.P., 1983, The corticotropin releasing factor (CRF) neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats, Histochemistry, 78:303.CrossRefGoogle Scholar
  21. Reul, J.M.H.M., and de Kloet, E.R., 1985, Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrin., 117:2505.CrossRefGoogle Scholar
  22. Roth, K.A., Weber, E., Barchas, J.D., Chang, D., and Chang, J-K., 1982, Immunoreactive dynorphin(l-8) and corticotropin releasing factor: Colocalization in a subpopulation of hypothalamic opioid peptide neurons, Science, 219:189.CrossRefGoogle Scholar
  23. Sapolsky, R.M., Krey, L.C., and McEwen, B.S., 1984, Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response, Proc. Natl. Acad. Sci., 81:6174.PubMedCrossRefGoogle Scholar
  24. Sapolsky, R.M., Krey, L.C., and McEwen, B.S., 1984, Stress down-regulates corticosterone receptors in a site-specific manner in the brain, Endocrinology, 114:287.PubMedCrossRefGoogle Scholar
  25. Sapolsky, R.M., McEwen, B.S., and Rainbow, T.C., 1983, Quantitative autoradiography of 3H corticosterone in rats brain. Brain Res., 271:331.PubMedCrossRefGoogle Scholar
  26. Sawchenko, P.E., 1987, Adrenalectomy-induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons: Anatomic, peptide and steroid specificity, J. Neurosci., 7:1093.Google Scholar
  27. Sawchenko, P.E., Swanson, L.W., and Vale, W.W., 1984, Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc. Natl. Acad. Sci. USA, 81:883.CrossRefGoogle Scholar
  28. Schafer, M.K.-H., Herman, J.P., Young, E., Thompson, R., Douglass, J., Sherman, T.G., Akil, H., Watson, S.J., in press, Gene expression of neuropeptides related to CRF after adrenalectomy, Soc. Neurosci. Abs. 13.Google Scholar
  29. Sherman, T.G., and Watson, S.J., 1986, In situ hybridization versus Northern analysis: working towards the correlation of two quantitative techniques for opioid and vasopressin mRNAs in the rat hypothalamus and pituitary, in: “Progress in Opioid Research,” J.W. Holaday, P-Y. Law and A. Herz, eds., NIDA Research Monograph 75, p. 287.Google Scholar
  30. Sherman, T.G., and Watson, S.J., submitted, Differential expression of vasopressin alleles in the Brattleboro heterozygote, J. Neurosci. Google Scholar
  31. Sherman, T.G., Civelli, O., Douglass, J., Herbert, E., and Watson, S.J., 1986a, Coordinate expression of hypothalamic pro-dynorphin and pro-vasopressin mRNAs with osmotic stimulation. Neuroendocrinology, 44:222.PubMedCrossRefGoogle Scholar
  32. Sherman, T.G., Day, R., Civelli, O., Douglass, J., Herbert, E., Akil, H., and Watson, S.J., submitted, The regulation of hypothalamic magnocellular neuropeptides and mRNAs in the Brattleboro rat, J. Neurosci. Google Scholar
  33. Sherman, T.G., Kelsey, J.E., Khachaturian, H., Burke, S., Akil, H., and Watson, S.J., 1986b, Opioid peptides and vasopressin: the application of in situ hybridization to studies of the hypothalamus and pituitary, in: “In situ Hybridization in Brain,” G.R. Uhl, ed., p. 49, Plenum Press, New York.CrossRefGoogle Scholar
  34. Sherman, T.G., McKelvy, J.F., and Watson S.J., 1986c, Vasopressin mRNA regulation in individual hypothalamic nuclei: A Northern and in situ hybridization analysis, J. Neurosci., 6:1685.PubMedGoogle Scholar
  35. Swanson, L.W., and Sawchenko, P.E., 1983, Hypothalamic integration: organization of the paraventricular and supraoptic nuclei, Ann. Rev. Neurosci., 6:269.PubMedCrossRefGoogle Scholar
  36. Swanson, L.W., Sawchenko, P.E., Rivier, J.E., and Vale, W., 1983, The organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: An immunohistochemical study, Neuroendocrinology, 36:165.PubMedCrossRefGoogle Scholar
  37. Tornello, S., Orti, E., DeNicola, A.F., Rainbow, T.C., and McEwen, B.S., 1982, Regulation of glucocorticoid receptors in rat brain by corticosterone treatment of adrenalectomized rats. Neuroendocrinology, 35:411.PubMedCrossRefGoogle Scholar
  38. Tramu, G., Croix, C., and Pillez, A., 1983, Ability of CRF immunoreactive neurons of the paraventricular nucleus to produce a vasopressin-like material, Neuroendocrinology, 37:467.PubMedCrossRefGoogle Scholar
  39. Uhl, G.R., 1986, “In Situ Hybridization in Brain,” Plenum Press, New York, pp. 257–290.Google Scholar
  40. Vale, W., Spiess, J., Rivier, C., and Rivier, J., 1981, Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and beta-endorphin, Science, 213:1394.PubMedCrossRefGoogle Scholar
  41. Vanderhaegen, J.J., Lotstra, F., Vandesande, F., and Dierickx, K., 1981, Coexistence of cholecystokinin and oxytocin-neurophysin in some magnocellular hypothalamo-hypophyseal neurons, Cell Tissue Res., 221:227.CrossRefGoogle Scholar
  42. Watson, S.J., Sherman, T.G., Kelsey, J.E., Burke, S., and Akil, H., 1987, Anatomical localization of mRNA: In situ hybridization of neuropeptide systems, in: “In situ Hybridization: Applications to Neurobiology,” K. Valentine, J. Eberwine and J Barchas, eds., p. 126.Google Scholar
  43. Wiegand, S.J., and Price, J.L., 1980, The cells of origin of the afferent fibers to the median eminence in the rat, J. Comp. Neurol., 192:1.PubMedCrossRefGoogle Scholar
  44. Wilson, M.M., Greer, S.E., Greer, M.A., and Roberts, L., 1980, Hippocampal inhibition of pituitary-adrenocortical function in female rats, Brain Res., 197:443.CrossRefGoogle Scholar
  45. Wolfson, B., Manning, R.W., Davis, L.G., Arentzen, R., 1985, Co-localization of corticotropin releasing factor and vasopressin mRNA In neurons after adrenalectomy, Nature, 315:59.PubMedCrossRefGoogle Scholar
  46. Yates, F.E., and Maran, J.W., 1974, Stimulation and inhibition of adrenocorticotropin release, in, “Handbook of Physiology, Vol. 4, E. Knobil and W.H. Sawyer, eds., American Physiological Society, Washington, D.C.Google Scholar
  47. Young III, S.W., Mezey, E., Siegel, R.E., 1986, Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci. Lett., 70:198.PubMedCrossRefGoogle Scholar
  48. Young III, S.W., Mezey, E., Siegel, R.E., 1986, Vasopressin and oxytocin mRNAs in adrenalectomized and Brattleboro rats: Analysis by quantitative in situ hybridization histochemistry, Mol. Brain Res., 1:231.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stanley J. Watson
    • 1
  • Thomas G. Sherman
    • 1
  • Martin K. Schafer
    • 1
  • Paresh Patel
    • 1
  • James P. Herman
    • 1
  • Huda Akil
    • 1
  1. 1.Mental Health Research InstituteUniversity of MichiganAnn ArborUSA

Personalised recommendations