Advertisement

Corrected Penetration Length of Alphas for Reheat Calculations

  • P. S. Ray
  • H. Hora

Abstract

The penetration length R of alphas, protons or other particles from nuclear reactions in high density plasmas is essential for the reaction yields in laser compressed plasmas, high energy particle beam interaction with dense plasmas and other reactions. The often used formula R ~ T3/2 gets a remarkable correction for T between 101 and 103 eV, if the thermalization is described by a Fokker-Planck equation taking into account the elastic as well as inelastic scattering. The results derived from a collective interaction similar to Bagge’s generalization of the Bethe-Bloch-formula, differ again from the mentioned former values despite the corrections discussed. The values of the collective model may have the highest probability as they agreed for fast electrons with the only direct measurements available.

Keywords

Penetration Depth Impact Parameter Heavy Particle Quantum Electrodynamic Angle Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hora, Laser Plasma and Nuclear Energy (Plenum, 1975).CrossRefGoogle Scholar
  2. 2.
    K. A. Brueckner and S. Joma, Rev. Mod. Phys. 46, 325 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    J. L. Bobin, Laser Interaction and Related Plasma Phenomena, H. Schwarz and H. Hora, Eds. (Plenum, 1974) Vol. SB, p.465.Google Scholar
  4. 4.
    M. N. Rosenbluth, et.al., Phys. Rev. 107, 1 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    M. S. Chu, D Thesis Columbia University (1971).Google Scholar
  6. 5a.
    F. Winterberg, Desert Research Institute Reprint Series No. 64, March (1969).Google Scholar
  7. 6.
    K. A. Brueckner et.al., J. Plasma Physics, 11, 403 (1974).ADSCrossRefGoogle Scholar
  8. 7.
    H. Tsuji et.al., Nuclear Fusion, 16, 287 (1976).ADSCrossRefGoogle Scholar
  9. 8.
    D. F. Duchs and D. Pfirsch, Proc. Corif. Plasma Physics and Controlled Nuclear Fusion, Vol. 1, p.669, Tokyo (1974) IAEA.Google Scholar
  10. 9.
    L. Spitzer, Physics of Fully Ionized Gases (Wiley, 1967).Google Scholar
  11. 10.
    H. Hora and H. Wilhelm, Nuclear Fusion, 10, 111 (1970).CrossRefGoogle Scholar
  12. 11.
    S. Rand, Phys. Rev., 136B, 231 (1964).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    T. P. Hughes and M. N. Florence, J. Phys. A (2), 1, 588 (1968).ADSGoogle Scholar
  14. 13.
    H. Hora, Opto-Electronics, 2, 201 (1970).CrossRefGoogle Scholar
  15. 14.
    B. Babuel-Peyrissac, 6th Int. Q. E. Conference (Kyoto, Sept., 1970), Conf. Digest p.14.Google Scholar
  16. 15.
    J. Dawson and C. Oberman, Phys. Fluids, 5, 517 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  17. 16.
    H. A. Bethe, Ann. d. Phys. 5, 325 (1930).ADSMATHCrossRefGoogle Scholar
  18. 17.
    F. Bloch, Ann. d. Phys. 16, 285 (1933).ADSCrossRefGoogle Scholar
  19. 18.
    J. R. Kerns, et.al., Bull. Am Phys. Soc. 17, 690 (1972).Google Scholar
  20. 19.
    G. Yanaes, Ettore Majorana Course Erice June (1973).Google Scholar
  21. 20.
    E. Bagge, 13th Int. Cosmic Ray Conf., Denver, Aug. (1973).Google Scholar
  22. 21.
    E. Bagge and H. Hora, Atomkernenergie, 24, 143 (1974).Google Scholar
  23. 22.
    E. Fermi, Nuclear Physics, p.28 (The University of Chicago Press, 1963).Google Scholar
  24. 23.
    P. S. Ray and H. Hora, Nuclear Fusion, 16, 535 (1976).ADSCrossRefGoogle Scholar
  25. 24.
    P. S. Ray and H. Hora, Atomkernenergie, 28, 155 (1976).Google Scholar
  26. 25.
    W. Pauli, Helv. Phys. Acta, Suppl IV, p.68 (1956).Google Scholar
  27. 26.
    H. Kramers, Physica, 7, 284 (1940).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 27.
    W. B. Thomson and J. Hubbard, Rev. Mod. Phys. 32, 714 (1960).ADSCrossRefGoogle Scholar
  29. 28.
    R. P. Feynman, Quantum Electrodynamics, p.150, (Benjamin, 1962).MATHGoogle Scholar
  30. 29.
    J. Schwinger, Phys. Rev., 76, 790 (1949).MathSciNetADSMATHCrossRefGoogle Scholar
  31. 30.
    J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, p. 126 (McGraw-Hill, 1964).Google Scholar
  32. 31.
    L. D. Landau, “Niels Bohr and the Development of Physics” (Pergamon-Press, London, 1955).Google Scholar
  33. 32.
    S. Gasiorowicz, et.al., Phys. Rev., 101, 922 (1956).ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • P. S. Ray
    • 1
  • H. Hora
    • 1
  1. 1.Dept. of Theoretical PhysicsThe University of New South WalesKensingtonAustralia

Personalised recommendations