Physical Models and Mathematical Simulation of Laser-Driven Implosion and Their Relations with Experiments

  • L. Brun
  • R. Dautray
  • F. Delobeau
  • C. Patou
  • F. Perrot
  • J.-M. Reisse
  • B. Sitt
  • J.-P. Watteau


To define implosion experiments and to interpret their results, we develop physical models and mathematical representation.

We summarize our experimental results of the interaction of a laser beam with a plane solid deuterium target and we discuss them.

An important work has been done on equations of state for different thermodynamical situations and materials. We build self similar models for flows, and study the influence and compatibility of the various terms. We compare our implosion experiment done with the laser C6 600 J — 1,4ns with those of the numerical simulation.

We analyse the hydrodynamic stability of the different parts of the target during the implosion and develop an entirely Lagrangian stability code coupled to the computation of the unperturbed flow.


Shock Front Thermal Wave Augmented Plane Wave Inverse Bremsstrahlung High Temperature Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Salères, Synthesis of experimental results on absorption processes in nanosecond laser interaction at 1.06 μm and 0,13 μm, European Conference on Laser Interaction with Matter, Palaiseau, October, 18–22/1976Google Scholar
  2. 2.
    J.C. Slater, Phys. Rev. 51, 846 (1937)ADSMATHCrossRefGoogle Scholar
  3. 2a.
    T.L. Loucks, in “Augmented Plane Wave Method” (Benjamin, New York, 1967)Google Scholar
  4. 3.
    F. Perrot, “Application de la méthode APW self-consistante aux métaux alcalins — Equations d’état de Li, Na et K”. Internal report, Commissariat à l’Energie Atomique, France (1970),Google Scholar
  5. 3a.
    F. Perrot, Phys. Lett. 44, 15 (1973),MathSciNetCrossRefGoogle Scholar
  6. 3b.
    M. Valadon, “Calcul de l’équation d’état des solides à température nulle par la méthode APW. Application numérique au lithium, à l’aluminium et au cuivre”. Internal report, Commissariat à l’Energie Atomique, France (1974)Google Scholar
  7. 4.
    H. Brooks, Suppl. del Nuovo Cimento, 7 (1958)Google Scholar
  8. 4a.
    G.M. Gandel’man, JETP 16, 94 (1969)Google Scholar
  9. 5.
    F. Perrot, Phys. Stat. Sol. (b) 77, 517 (1976)ADSCrossRefGoogle Scholar
  10. 6.
    N.W. Ashcroft and D.C. Langreth, Phys. Rev.BV 155, 682 (1967)ADSCrossRefGoogle Scholar
  11. 6.
    C. Friedli and N.W. Ashcroft, Phys. Rev. B 12, 5552 (1975)ADSCrossRefGoogle Scholar
  12. 7.
    F. Perrot, “Equation d’état du polyéthylène”. Internal reports, Commissariat à l’Energie Atomique, France (1974–75)Google Scholar
  13. 7a.
    F. Perrot “Equation d’état de l’aluminium”. Internal report, Commissariat à l’Energie Atomique, France (1975)Google Scholar
  14. 8.
    G. Boissière, “Détermination d’une équation d’état du cuivre tenant compte des changements de phase”. Internal report, Commissariat à l’Energie Atomique, France (1973)Google Scholar
  15. 9.
    D.A. Young and B.J. Alder, Phys. Rev. A3, 364 (1971)ADSGoogle Scholar
  16. 10.
    D. Billon, D. Cognard, P.A. Holstein, J. Launspach, C. Patou, D. Schirmann, J.M. Reisse, “Laser driven implosion of microspheres”, IXth International Conference of Quantum Electronic, Amsterdam, 14–18 June 1976Google Scholar
  17. 11.
    D. Billon, P.A. Holstein, J. Launspach, C. Patou, J.M. Reisse, D. Schirmann, “Laser driven implosion experiments at Limeil”, International Workshop Conference at the Rensselaer Polytechnic Institute, 8–12 November 1976, Troy, N.Y. These Proceedings, pp. 503–534.Google Scholar
  18. 12.
    N. Fleurot, J.P. Gex, M. Lamy, C. Quinnessière, R. Sauneuf, “High time resolution X-ray streak camera with X-ray microscope” XIIth International Congress on High Speed Photography, 1 August 1976, TorontoGoogle Scholar
  19. 13.
    S.K. Aslanov, Soviet Physics — Doklady, 11, n° 7, 563–565 (1967)ADSGoogle Scholar
  20. 14.
    G.W. Swan, G.R. Fowles, The Phys. of Fluids, 18, 1, 28–35 (1975)ADSMATHCrossRefGoogle Scholar
  21. 15.
    D.S. Butler, A.R.D.E. Report B — 18/56 (1956)Google Scholar
  22. 16.
    L. Brun, CEA unpublished Report DO 121 (1974)Google Scholar
  23. 17.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, 1961) § 92Google Scholar
  24. 18.
    cf. Ref. 5, Chap. 2Google Scholar
  25. 19.
    K.A. Brueckner, S. Jorna, R. Janda, The Phys. of Fluids, 17, 8 1554–1559 (1974)ADSCrossRefGoogle Scholar
  26. 20.
    D.B. Henderson, R.L. Morse, Phys. Rev. Letters, 32, 7, 355–358 (1974);ADSCrossRefGoogle Scholar
  27. 20a.
    D.B. Henderson, R.L. Mc Crory, R.L. Morse, Phys. Rev. Lett., 33., 4, 205–208 (1974);ADSCrossRefGoogle Scholar
  28. 20.
    G.S. Fraley et al., 5th I.A.E.A. Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, paper I.A.E.A. — CN-33/F5–5 (nov. 11–15, 1974)Google Scholar
  29. 21.
    J.N. Shiau, E.B. Goldman, C.I. Weng, Lab. of Laser Energetics, Univ. of Rochester Report n° 14 (1974); Physc. Rev. Letters, 32, 7, 352–355 (1974)ADSCrossRefGoogle Scholar
  30. 22.
    T. Yabe, K. Niu, I.P.P.J. (June 1975)Google Scholar
  31. 23.
    J.D. Lindl, W.C. Mead, Reports UCRL 75877 and 75879; Phys. Rev. Lett., 34, 20, 1273–1275 (1975); UCRL 77041 (1975)ADSCrossRefGoogle Scholar
  32. 24.
    L. Brun, B. Sitt, CEA unpublished Report DO 133, 1975Google Scholar
  33. 25.
    B. Sitt, N. Wilke, H. Barbry, (Annual Meeting of the A.P.S. Division of Plasma Physics, Nov. 1976) APS Bulletin 21, 9, 1102Google Scholar
  34. 26.
    F. Perrot, CEA unpublished Report DO 137, (1975)Google Scholar
  35. 27.
    G.I. Kerley, L.A. 4776 UC-34 (1972)Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • L. Brun
    • 1
  • R. Dautray
    • 1
  • F. Delobeau
    • 1
  • C. Patou
    • 1
  • F. Perrot
    • 1
  • J.-M. Reisse
    • 1
  • B. Sitt
    • 1
  • J.-P. Watteau
    • 1
  1. 1.Centre d’Etudes de LimeilFrance

Personalised recommendations