Advertisement

Kinetic Energy of Laser Accelerated Charged Particles in a Plasma and the Possibility of Pair Production

  • Helmut Schwarz
  • Romualdo Tabensky

Abstract

An exact solution of the general equation of motion of charged particles in a medium of refractive index n subjected to irradiation of electromagnetic waves at any intensity and frequency is given. No approximations are necessary even for the relativistic case. Linearly polarized as well as circularly polarized waves are considered. Self-induced fields due to the generated charged particle currents have very little influence on the solutions, especially at higher intensities, where electron-positron pair production can be expected.

Keywords

Refractive Index Kinetic Energy Pair Production Laser Field Rensselaer Polytechnic Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Breit and J. A. Wheeler, Phys. Rev. 46, 1087 (1934).ADSMATHCrossRefGoogle Scholar
  2. 2.
    A. A. Varfolomeyev, Sov. Phys.-JETP 23, 681 (1966).ADSGoogle Scholar
  3. 3.
    H. J. Bhabha, Proc. Roy. Soc. (London) A 152, 559 (1935).ADSMATHCrossRefGoogle Scholar
  4. 4.
    J. H. Eberly, in Progress in Optics Vol. VII, Editor: E. Wolf (North-Holland Publishing Co., Amsterdam 1969) pp. 361.Google Scholar
  5. 5.
    H. R. Reiss, J. Math. Phys. 3, 59 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    H. R. Reiss, Phys. Rev. Lett. 26, 1072 (1971).ADSCrossRefGoogle Scholar
  7. 7.
    A. I. Nikishov and V. I. Ritus, Sov. Phys.-JETP 19, 529 and 1191 (1964).MathSciNetGoogle Scholar
  8. 8.
    F. V. Bunkin and I. I. Tugov, Sov. Phys.-Dokl. 14, 678 (1970).ADSGoogle Scholar
  9. 9.
    E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).ADSCrossRefGoogle Scholar
  10. 10.
    V. P. Yakovlev, Sov. Phys.-JETP 22, 223 (1966).ADSGoogle Scholar
  11. 11.
    J. W. Shearer, J. Garrison, J. Wong, and J. E. Swain, in Laser Interaction and Related Plasma Phenomena, Editors: H. Schwarz and H. Hora (Plenum Press, New York 1974) Vol. 3B, pp. 803.Google Scholar
  12. 12.
    F. V. Bunkin and A. E. Kazakov, Sov. Phys.-Dokl. 15, 758 (1971).ADSGoogle Scholar
  13. 13.
    All formulae in this paper are written in such a way that the SI system of units (Système Internationale) can be used which is identical with the rationalized MKSA system.Google Scholar
  14. 14.
    T. Erber, Rev. Mod. Phys. 38, 626 (1966).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    A. D. Steiger and C. H. Wood, Phys. Rev. A 5, 1467 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    see for example: A. N. Matveyev, Principles of Electrodynamics. Translation Editor: L. F. Landovitz (Reinhold Publishing Corp., New York 1966) p. 358.Google Scholar
  17. 17.
    see for example: R. E. Kidder in Physics of High Density. Editors: P. Caldirola and H. Knoepfel (Academic Press 1971). Course Number 48.Google Scholar
  18. 18.
    A. I. Akhiezer and R. V. Polovin, Sov. Phys.-JETP 3, 696 (1956).MathSciNetMATHGoogle Scholar
  19. 19.
    P. Kaw and J. Dawson, Phys. Fluids 13, 472 (1972).ADSCrossRefGoogle Scholar
  20. 20.
    C. E. Max and F. Perkins, Phys. Rev. Lett. 27, 1342 (1971).ADSCrossRefGoogle Scholar
  21. 21.
    C. E. Max, Phys. Fluids 16, 1277 and 1480 (1973).ADSCrossRefGoogle Scholar
  22. 22.
    M. Dobrowolny, A. Ferrari, and G. Bosia, Plasma Phys. 18, 441 (1976).ADSCrossRefGoogle Scholar
  23. 23.
    F. W. Sluijter and D. Montgomery, Phys. Fluids 8, 551 (1965).ADSMATHCrossRefGoogle Scholar
  24. 24.
    N. L. Tsintsadze, Sov. Phys.-JETP 32, 684 (1971).ADSGoogle Scholar
  25. 25.
    A. Ferrari, S. Massaglia, and M. Dobrowolny, Phys. Lett. 55A, 227 (1975).ADSGoogle Scholar
  26. 26.
    E. L. Kane and H. Hora, these Proceedings p. 913.Google Scholar
  27. 27.
    N. D. Sengupta, Calcutta Math. Soc. Bull. 39, 147 (1947);MATHGoogle Scholar
  28. 27a.
    N. D. Sengupta, Calcutta Math. Soc. Bull. 41, 187 (1949).MATHGoogle Scholar
  29. 28.
    A. H. Taub, Phys. Rev. 73, 786 (1948).MathSciNetADSMATHCrossRefGoogle Scholar
  30. 29.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Addison-Wesley Publishing Co., Inc., Reading, Mass. 1951) [p. 118 (problems) in 3rd Edition of 1971].MATHGoogle Scholar
  31. 30.
    H. Hora, Opto-electronics 5, 491 (1973).CrossRefGoogle Scholar
  32. 31.
    H. Hora, in Laser Interaction and Related Plasma Phenomena. Editors: H. Schwarz and H. Hora (Plenum Press, New York 1974) Vol. 3B, pp. 819.Google Scholar
  33. 32.
    M. B. Nicholson-Florence, these Proceedings p. 981.Google Scholar
  34. 33.
    W. Lünow, Plasma Phys. 10, 879 and 973 (1968).ADSCrossRefGoogle Scholar
  35. 34.
    C. S. Lai, Phys. Rev. Lett. 36, 966 (1976).ADSCrossRefGoogle Scholar
  36. 35.
    R. M. Lichtenstein and H. Schwarz, Bull. Am. Phys. Soc. 19, 676 (1974).Google Scholar
  37. 36.
    P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists. 2nd Edition (Springer Verlag, Berlin, Heidelberg, New York 1971).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Helmut Schwarz
    • 1
    • 2
  • Romualdo Tabensky
    • 1
  1. 1.Departamento de FísicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations