Advertisement

Relativistic Self-Focusing

  • E. L. Kane
  • H. Hora

Abstract

Laser intensities of order and above 0.001 times the relativistic intensity Irel coupled with ionized target electron number densities close to and above the laser cutoff density nec exhibit sudden relativistic self-focusing, with attendent beam converging lengths about equal to the diameter of the initial vacuum laser beam. The analytical model is a relativistic generalization, including mass and energy effects, of the plasma electron-ion collision process, combined with a local bending of the laser beam wave front resulting from influences on the plasma refractive index. Dependences on the plasma temperature, degree of ionization and instabilities, as given by an effective collision frequency, are studied. Self-focusing and dielectric swelling results in maximum oscillation energies in agreement with several high intensity experiments. The wavelength independence of electron energy, as shown in the recent experiments of G. H. McCall, as well as measured MeV ion emission from irradiated targets, can be explained by the model. It is concluded that Nd glass laser beams of 1014 Watts power will generate dense plasmas containing highly charged heavy ions with maximum energies approximately 20 GeV.

Keywords

Laser Intensity Electron Number Density Oscillation Energy Glass Laser Effective Collision Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hora, J. Opt. Soc. Am. 65, 882 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    N. L. Tsintsatse and E. G. Tsikarishvili, Astrophys. and Space Science 39, 191 (1976).ADSCrossRefGoogle Scholar
  3. 3.
    E. L. Kane and H. Hora, submitted to Aust. J. Phys.Google Scholar
  4. 4.
    E. L. Kane and H. Hora, Conference on Lasers and Nonlinear Optics, Tbilissi, May, 1976; R. Castillo, et al., Nucl Inst. and Methods (in print).Google Scholar
  5. 5.
    M. R. Siegrist, B. Luther-Davies and J. L. Hughes, Opt. Comm. 18, 603 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    A. W. Ehler, J. Appl. Phys. 46, 2464 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    G. H. McCall, Conference on Lasers and Nonlinear Optics, Tbilissi, May, 1976.Google Scholar
  8. 8.
    H. Hora and E. L. Kane, to be published in Appl. Phys. (1977).Google Scholar
  9. 9.
    S. A. Akhmanov, D. P. Krindach, A. P. Sukhorkokov and R. V. Khokhlov, JETP Lett. 6, 38 (1967).ADSGoogle Scholar
  10. 10.
    M. S. Sodha, A. K. Ghatak and V. K. Tripathi, Progress in Optics XIII, Ed. E. Wolf, p. 171, (1976).Google Scholar
  11. 11.
    H. Hora, Z. Phys. 226, 156 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Korobkin and A. J. Alcock, Phys. Rev. Lett. 21, 1433, (1968).ADSCrossRefGoogle Scholar
  13. 13.
    W. M. Manheimer and E. Ott, Phys. Fluids 17, 1413, (1974);ADSCrossRefGoogle Scholar
  14. 13a.
    G. V. Ostrovskiya and A. N. Zaidel, Soviet Physics Uspekhi, 16, 834 (1974);ADSCrossRefGoogle Scholar
  15. 13b.
    J. A. Stamper and D. A. Tidman, Phys. Fluids 16, 2024 (1973);ADSCrossRefGoogle Scholar
  16. 13c.
    D. A. Tidman, Phys. Rev. Lett. 32, 1179 (1974);ADSCrossRefGoogle Scholar
  17. 13d.
    B. Bhat and V. K. Tripathi, J. Appl. Physics 46, 1141 (1975).ADSCrossRefGoogle Scholar
  18. 14.
    M. R. Siegrist, Opt. Comm. 16, 402 (1976).ADSCrossRefGoogle Scholar
  19. 15.
    J. W. Shearer and J. L. Eddleman, Phys. Fluids 16, 1753 (1973);ADSCrossRefGoogle Scholar
  20. 15a.
    F. F. Chen in Laser Interaction and Related Plasma Phenomena, H. Schwarz and H. Hora, eds. (Plenum, New York, 1974) Vol. 3A, p.291.Google Scholar
  21. 16.
    C. Max and F. Perkins, Phys. Rev. Lett. 27, 1342 (1971).ADSCrossRefGoogle Scholar
  22. 17.
    H. Hora, Laser Interaction and Related Plasma Phenomena, H. Schwarz and H. Hora, eds. (Plenum, New York, 1974) Vol. 3B, p. 819.Google Scholar
  23. 18.
    H. Hora, Laser Plasmas and Nuclear Energy, (Plenum, New York, 1975).CrossRefGoogle Scholar
  24. 19.
    R. E. Kidder in Proc. of International School of Physics “Enrico Fermi”, Physics of High Energy Density, P. Caldirola and H. Knoepfel, eds. (Academic Press, 1971) Vol. XLVIII, p. 306.Google Scholar
  25. 20.
    P. Kaw and J. Dawson, Phys. Fluids 13, 472 (1970).ADSCrossRefGoogle Scholar
  26. 21.
    L. Spitzer, jr., Physics of Fully Ionized Gases, (Interscience, New York, 1962).Google Scholar
  27. 22.
    J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962);MathSciNetADSMATHCrossRefGoogle Scholar
  28. 22a.
    T. W. Johnston and J. Dawson, Phys. Fluids 16, 722 (1973).Google Scholar
  29. 23.
    S. A. Akhmanov, A. P. Sukhorukov and R. V. Khokhlov, JETP, 23, 1025 (1966).ADSGoogle Scholar
  30. 24.
    C. J. Elliott and D. B. Henderson, J. Appl. Phys., 46, 354 (1975).ADSCrossRefGoogle Scholar
  31. 25.
    M. S. Sodha, D. P. Tewari, A. Kumar and V. K. Tripathi, J. Phys. D: Appl. Phys., 7, 345 (1974).ADSCrossRefGoogle Scholar
  32. 26.
    H. Hora, Phys. Fluids, 12, 182 (1969).ADSCrossRefGoogle Scholar
  33. 27.
    H. Hora, Aust. J. Phys. 29, 375 (1976).ADSGoogle Scholar
  34. 28.
    H. Hora, Sov. J. Quantum Electronics, 6, 154 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • E. L. Kane
    • 1
  • H. Hora
    • 1
  1. 1.Dept. of Theoretical PhysicsThe University of New South WalesKensingtonAustralia

Personalised recommendations