Wavelength-Dependent Phenomena in Nonlinear Laser-Plasma Interactions

  • Keith A. Brueckner


The number and energy distribution of superthermal electrons produced in a laser-heated plasma can be quantitatively obtained directly from the experimental x-ray spectrum using only the assumption that the fast electrons lose energy by bremsstrahlung and electron-electron collisions. The result is independent of the spatial and temporal distribution of electron density and temperature. This analysis is given in Sec. II.


Radiation Pressure Fast Electron Critical Density Superthermal Electron Absorb Laser Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. W. Allen, Astrophysical Quantities (University of London, The Athlone Press, 1955).Google Scholar
  2. 2.
    Lyman Spitzer, Jr., Physics of Fully Ionized Gases. Interscience Tracts on Physics and Astronomy. No, 3 (Interscience Publishers, Inc., New York, 1956).MATHGoogle Scholar
  3. 3.
    H. G. Ahlstrom, UCRL Report 77094 Rev 1, Oct. 8, 1975; Bull. Am. Phys. Soc., Oct., 1975 (papers 3C9, 3C10, and 3C 11).Google Scholar
  4. 4.
    W. C. Mead, W. L. Kruer, J. D. Lindl, and H. D. Shay, Bull. Am. Phys. Soc., Oct., 1975 (paper 2C5).Google Scholar
  5. 5.
    J. P. Freidberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Phys. Rev. Letters 28, 795 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    See, for example, Landau and Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1960).MATHGoogle Scholar
  7. 7.
    John A. Stamper, “Field Generation by a Generalized Ponderomotive Force,” NRL Memorandum Report 3186, Naval Research Lab., Washington, D. C. (Dec., 1975).Google Scholar
  8. 8.
    R. E. Kidder, “Interaction of Intense Photon Beams with Plasmas (II), “ Proc. Japan-U. S. Seminar, Laser Interaction with Matter, Sept. 24–29, 1972.CrossRefGoogle Scholar
  9. 9.
    K. Estabrook, E. J. Valeo, and W. L. Kruer, Physics Letters 49A, 109(1974).ADSGoogle Scholar
  10. 10.
    K. Estabrook, E. J. Valeo, and W. L. Kruer, Phys. Fluids 18, 1151 (1975).ADSCrossRefGoogle Scholar
  11. 11.
    K. A. Brueckner and S. Joma, Rev. Mod. Phys. 46, 325 (1974).ADSCrossRefGoogle Scholar
  12. 12.
    J. D. Lindl and P. K. Kaw, Phys. Fluids 14, 371 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    K. Lee, D. Forslund, J. Kindel, and E. Lindman, Los Alamos Scientific Lab. Report LA-UR-75–2097 (submitted to J. Phys. Fluids).Google Scholar
  14. 14.
    Experiments at the Naval Research Lab., Washington, D. C. (Dr. Stephen E. Bodner, private communication) and at the University of Rochester (Professor Moshe Lubin, private communication) have suggested that marked density-gradient anomalies exist with one-micron radiation in the 1015 - 1016 watts/cm2 range.Google Scholar
  15. 15.
    K. A. Brueckner, P. M. Campbell, and R. A. Grandey, Nucl. Fusion 15, 471 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    R. E. Kidder, Nucl. Fusion 14, 797 (1974).ADSCrossRefGoogle Scholar
  17. 17.
    S. J. Kitomer, R. L. Morse, and B. S. Newberger, “Structure and Scaling Laws of Laser-Driven Ablative Implosions, “ Los Alamos Scientific Lab. Report #LA6079MS, to be published in Physics of Fluids.Google Scholar
  18. 18.
    R. E. Kidder and J. W. Zink, Nucl. Fusion 12, 325 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Keith A. Brueckner
    • 1
  1. 1.University of CaliforniaSan Diego, La JollaUSA

Personalised recommendations