Electromagnetic Wave Interactions with Inhomogeneous Plasmas

  • A. Y. Wong


Experimental observations of electromagnetic wave propagation and interactions with a large inhomogeneous laboratory plasma are summarized. The dominant process is the conversion of electromagnetic waves into electrostatic waves whose field strengths are enhanced by several orders of magnitude in the vicinity of the resonant layer where the incident frequency matches the local plasma frequency. Strong local accelerations of electrons and ions by these localized resonant fields are described. Density cavities produced by the digging actions of these ponderomotive forces are called “cavitons” which coexist with the rf fields. Parametric decay instabilities are found to be a much weaker process compared with the caviton formation at the resonant layer. A double resonance technique of controlling ion dynamics at a specific location in an inhomogeneous plasma is demonstrated. The correlations between the present experiments and laser-plasma interactions, as well as radio wave interactions with the ionosphere, are discussed.


Density Perturbation Langmuir Probe Ponderomotive Force Critical Layer Inhomogeneous Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. F. Kephart, R. P. Godwin, and G. H. McCall, Appl. Phys. Letters 25 (1974) 108ADSCrossRefGoogle Scholar
  2. 1a.
    A. W. Ehler, J. Appl. Phys. 46 (1975)Google Scholar
  3. 1b.
    Ripin, et al., Phys. Rev. Letters 34 (1975) 1313.ADSCrossRefGoogle Scholar
  4. 2.
    W. F. Utlaut, J. Geophys. Res. 75 (1970) 6402ADSCrossRefGoogle Scholar
  5. 2a.
    A. Y. Wong and R. J. Taylor, Phys. Rev. Letters 27 (1971) 644ADSCrossRefGoogle Scholar
  6. 2b.
    W. E. Gordon, H. C. Carlson, and R. L. Showen, J. Geophys. Res. 77. (1972) 1242.ADSCrossRefGoogle Scholar
  7. 3.
    J. P. Friedberg, R. W. Mitchell, R. L. Morse, and L. I. Rudsinski, Phys. Rev. Letters 28 (1972) 795ADSCrossRefGoogle Scholar
  8. 3a.
    N. G. Denisov, Soviet Phys.-JETP 4 (1957) 544MathSciNetGoogle Scholar
  9. 3b.
    A. D. Piliya, Zh. Tekh. Fiz. 36 (1966) 818 [Soviet Phys. Tech. Phys. 11 (1966) 609]Google Scholar
  10. 3c.
    M. M. Mueller, Phys. Rev. Lett 30 (1973) 582ADSCrossRefGoogle Scholar
  11. 3d.
    D. Kelley and A. Banos, Phys Fluids 17 (1974) 2275.ADSCrossRefGoogle Scholar
  12. 4.
    G. J. Morales, Y. C. Lee, and R. B. White, Phys. Rev. Letters 32 (1974) 457ADSCrossRefGoogle Scholar
  13. 4a.
    G. J. Morales, Y. C. Lee, and R. B. White, Phys. Rev. Letters 33 (1974) 1016ADSCrossRefGoogle Scholar
  14. 4b.
    E. Valeo and W. Kruer, Phys. Rev. Letters 33 (1974) 750ADSCrossRefGoogle Scholar
  15. 4c.
    P. Koch and J. Albritton, Phys. Rev. Letters 32 (1974) 1420ADSCrossRefGoogle Scholar
  16. 4d.
    K. E. Valeo, and W. Kruer, Phys. Fluids 18, 1151 (1975)ADSCrossRefGoogle Scholar
  17. 4e.
    D. W. Forslund, J. M. Kindel, K. Lee, L. Lindman, and R. L. Morse, Phys. Rev. Letters 11 (1975) 679ADSGoogle Scholar
  18. 4f.
    K. Nishikawa, H. Hojo, K. Mima, and H. Ikezi, Phys. Rev. Letters 33 (1974) 148ADSCrossRefGoogle Scholar
  19. 4g.
    K. Mima, K. Nishikawa, and H. Ikezi, Phys. Rev. Letters 35 (1975) 726.ADSCrossRefGoogle Scholar
  20. 5.
    A. Y. Wong, R. L. Stenzel, D. Arnush, B. D. Fried, C. F. Kennel, and H. Reim, APS Bull. 14 (1972) 1017.Google Scholar
  21. 6.
    R. L. Stenzel, A. Y. Wong, and H. C. Kim, Phys. Rev. Letters 32 (1974) 654.ADSCrossRefGoogle Scholar
  22. 7.
    W. DiVergilio and A. Y. Wong, TRW Memo, 1976.Google Scholar
  23. 8.
    R. L. Stenzel, Rev. Sci. Instr. 15 (1974) 626.ADSCrossRefGoogle Scholar
  24. 9.
    H. C. Kim, A. Y. Wong, and R. L. Stenzel, UCLA PPG-177 (June 1974).Google Scholar
  25. 10.
    H. C. Kim, R. L. Stenzel, and A. Y. Wong, Phys. Rev. Letters 33 (1974) 886.ADSCrossRefGoogle Scholar
  26. 11.
    R. L. Stenzel, H. C. Kim, and A. Y. Wong, Radio Science 10 (1974) 485.ADSCrossRefGoogle Scholar
  27. 12.
    H. Ikezi et al., J. Phys. Soc. Japan 37 (1974) 766 observed resonant effects but not stationary density cavities as in Kim et al.ADSCrossRefGoogle Scholar
  28. 13.
    B. Quon, T. Yoshizumi, H. Injeyan, P. Leung, and A. Y. Wong, UCLA Internal Memo (1975).Google Scholar
  29. 14.
    G. Morales and Y. C. Lee, Phys. Rev. Letters 33 (1974) 1016; UCLA PPG-211 (Feb. 1975).ADSCrossRefGoogle Scholar
  30. 15.
    A. Y. Wong and R. L. Stenzel, Phys. Rev. Letters 34. (1975) 727.ADSCrossRefGoogle Scholar
  31. 16.
    W. DiVergelio, A. Y. Wong, H. C. Kim and Y. C. Lee, Phys. Rev. Letters 38, to be published 1977.Google Scholar
  32. 17.
    J. J. Thomson, C. E. Max and K. Estabrook, Phys. Rev. Letters 35 (1975) 663.ADSCrossRefGoogle Scholar
  33. 18.
    A. Y. Wong, UCLA PPG-143 (1973)Google Scholar
  34. 18a.
    R. L. Stenzel, A. Y. Wong, D. Arnush, B. D. Fried, and C. F. Kennel, Proceedings of the AGARD-NATO Meeting, CTP-138, No. 4-l Edinburgh (November 1973)Google Scholar
  35. 18b.
    A. Y. Wong, R. L. Stenzel, H. C. Kim, and F. F. Chen, Plasma Physics and Controlled Nuclear Fusion Research, v. II. 589, 1AEA-CN-33/H 4–1 (1975).Google Scholar
  36. 19.
    D. Arnush and C. Kennel, Phys. Rev. Letters 30 (1973) 597.ADSCrossRefGoogle Scholar
  37. 20.
    A. Y. Wong, D. R. Baker, and N. Booth, Phys. Rev. Letters 24 (1970) 804ADSCrossRefGoogle Scholar
  38. 20a.
    D. Arnush, K. Nishikawa, B. Fried, C. Kennel, and A. Y. Wong, Phys. Fluids 16 (1973) 2270.ADSCrossRefGoogle Scholar
  39. 21.
    A. Y. Wong, R. J. Taylor, D. Arnush, B. D. Fried, and C. F. Kennel, TRW Memo (December 1971).Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • A. Y. Wong
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of CaliforniaLos AngelesUSA
  2. 2.TRW Defense and Space SystemsRedondo BeachUSA

Personalised recommendations