Heat Transport in Spatially Fluctuating Laser-Generated D.C. Magnetic Fields

  • Claire Ellen Max
  • Wallace M. Manheimer
  • Jeffrey J. Thomson


In this paper, we investigate anomalous electron thermal conduction perpendicular to d.c. laser-generated B fields. We find that d.c. spatial fluctuations δB about a mean field BO can produce large enhancements in the cross-field diffusion coefficient, over its δB = 0 value. There are by now a multitude of suggested sources for laser-generated d.c. magnetic fields. When all these processes act at once, the likely result is an overall “average” field BO which is probably toroidal, due to Vn x VT sources, plus a spatially fluctuating component δB due to the sum of all the other field sources. For parameters appropriate to laser fusion experiments, we use a quasilinear model to describe the effect of particle scattering by fluctuations δB. We find that if δB ⪝ BO, the diffusion coefficient can be comparable to the Bohm value: D ∼ (v t 2 c(∣δB∣)2/B o 2 ). Next we discuss the effect of field-line wandering on the flux. Finally, we investigate an analogue of neoclassical diffusion appropriate to laser-plasma conditions.


Heat Transport Resonant Scattering Vacuum Wavelength Collisionless Regime Bounce Motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. A. Brueckner and S. Jorna, Rev. Mod. Phys. 46, 325 (1974), and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    D. G. Colombant and N. K. Winsor, “The Thermal-Force Terms and Self-Generated Magnetic Fields in Laser-Produced Plasmas”, U.S. Naval Research Laboratory Report 3362, 1976.Google Scholar
  3. 3.
    D. A. Tidman, Phys. Rev. Lett. 32, 1179 (1974)ADSCrossRefGoogle Scholar
  4. 3a.
    D. A. Tidman and L. L. Burton, Phys. Rev. Lett. 37, 1397 (1976).ADSCrossRefGoogle Scholar
  5. 4.
    M. S. Sodha, A. K. Ghatak, and V. K. Tripathi, “Self Focusing of Laser Beams in Plasmas and Semiconductors”, in Progress in Optics XIII (North-Holland, Amsterdam, 1976), edited by E. Wolf, and references thereinGoogle Scholar
  6. 4a.
    . C. E. Max, Phys. Fluids 19, 74 (1976).ADSCrossRefGoogle Scholar
  7. 5.
    J. A. Stamper, Phys. Fluids 18, 735 (1975)ADSCrossRefGoogle Scholar
  8. 5a.
    J. A. Stamper, Phys. Fluids 19, 758 (1976)ADSCrossRefGoogle Scholar
  9. 5b.
    J. J. Thomson, C. E. Max, and K. G. Estabrook, Phys. Rev. Lett. 35, 663 (1975); B. Bezzerides, D. F. DuBois, and D. W. Forslund, to be published.ADSCrossRefGoogle Scholar
  10. 6.
    K. G. Estabrook, Phys. Fluids 19, 1733 (1976)ADSCrossRefGoogle Scholar
  11. 6a.
    D. W. Forslund, Bull. Am. Phys. Soc. 21, 1066 (1976).Google Scholar
  12. 7.
    D. A. Tidman and R. A. Shanrry, Phys. Fluids 17, 120T (1974)CrossRefGoogle Scholar
  13. 7a.
    B. A. Al’terkop et al., JETP Lett. 19, 170 (l974)Google Scholar
  14. 7b.
    B. A. Al’terkop and E. V. Mishin, Phys. Lett. 46A, 319 (1974)ADSGoogle Scholar
  15. 7c.
    L. A. Bol’shov et al., JETP Lett. 19, 168 (1974).ADSGoogle Scholar
  16. 8.
    C. E. Max, W. M. Manheimer, and J. J. Thomson, to be published.Google Scholar
  17. 9.
    R. D. Hazeltine, “Review of Neoclassical Transport Theory”, in Advances in Plasma Physics vol. 6 (Wiley, N.Y., 1976), edited by A. Simon and W. B. Thompson.Google Scholar
  18. 10.
    R. C. Malone, R. L. McCrory, and R. L. Morse, Phys. Rev. Lett. 34, 721 (1975)ADSCrossRefGoogle Scholar
  19. 10a.
    W. C. Mead et al., Phys. Rev. Lett. 37, 489 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Claire Ellen Max
    • 1
  • Wallace M. Manheimer
    • 1
    • 2
  • Jeffrey J. Thomson
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA
  2. 2.U.S. Naval Research Lab.USA

Personalised recommendations