Advertisement

Control of Sterol Biosynthesis and its Importance to Developmental Regulation and Evolution

  • W. David Nes
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 24)

Abstract

Sterols are virtually ubiquitous constituents of all living systems at some point in their life history.1,2 In a few organisms they are replaced by pentacyclic triterpenoids.3–5 Although sterols may differ structurally from each other they share similar amphiphathic properties which make them suitable as membrane components. The principal function for sterols and sterol-like molecules is thought to be a non-metabolic one as an architectural component of membranes; while at the same time at sites not yet clear, there appears to be additional developmentally regulated functions for sterols to control the cell cycle.6–10 The multiple sterol functions appear to be species specific, but which sterol is essential in sterol-controlled ontogenetic events6 is not always predictable with the current data base. This chapter will be concerned with approaches developed in this laboratory to interrupt sterol biosynthesis and to assess the functional importance of sterols in the regulation of growth and reproduction of plants and fungi.

Keywords

Plant Sterol Sterol Biosynthesis Isoprene Unit Pentacyclic Triterpenoids Side Chain Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    NES, W.R. 1974. Role of sterols in membranes. Lipids 9: 596–612.PubMedCrossRefGoogle Scholar
  2. 2.
    NES, W.D., E. HEFTMANN. 1981. A comparison of triterpenoids with steroids as membrane components. J. Nat Prod. 44: 377–400.CrossRefGoogle Scholar
  3. 3.
    ROHMER, M., P. BOUVIER, G. OURISSON. 1979. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl. Acad. Sci. USA. 76: 847–851.PubMedCrossRefGoogle Scholar
  4. 4.
    NES, W.D., R.C. HEUPEL, P.H. LE. 1984. A comparison of sterol biosynthesis in fungi and tracheophytes and its phylogenetic and functional implications. In: Structure, function and metablism of plant lipids. (P.A. Siegenthaler and W. Eichenberger, eds.), Elsevier Publ., Amsterdam, pp. 207–216.Google Scholar
  5. 5.
    PORALLA, K., E. KANNENBERG. 1987. Hopanoids: sterol equivalents in bacteria. ACS. Symp. Ser. 325: 239–251.CrossRefGoogle Scholar
  6. 6.
    NES, W.D. 1987. Biosynthesis and requirement for sterols in the growth and reproduction of Oomycetes. ACS Symp. Ser. 325: 304–328.CrossRefGoogle Scholar
  7. 7.
    SIPERSTEIN, M.D. 1984. Role of cholesterogenesis and isoprenoid synthesis in DNA replication and cell growth. J. Lipid Res. 25: 1462–1468.PubMedGoogle Scholar
  8. 8.
    HAUGHAN, P.A., J.R. LENTON, L.J. GOAD. 1987. Paclobutrazol inhibition of sterol biosynthesis in a cell suspension culture and evidence of an essential role for 24-ethyl sterol in plant cell division. Biochem. Biophys. Res. Commun. 146: 510–516.PubMedCrossRefGoogle Scholar
  9. 9.
    GROSSMAN, K., E.W. WEILER, J. JUNG. 1985. Effects of different sterols on the inhibition of cell culture growth caused by the growth retardant tetracyclacis. Planta 164: 370–375.CrossRefGoogle Scholar
  10. 10.
    DAHL, D., H. BIEMANN, J. DAHL. 1987. A protein kinase antigenically related to pp60v-src possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Proc. Natl. Acad. Sci. USA. 84: 4012–4016.PubMedCrossRefGoogle Scholar
  11. 11.
    NES, W.R. 1977. The biochemistry of plant sterols. Adv. Lipid Res. 15: 233–324.Google Scholar
  12. 12.
    GOAD, L.J. 1983. How is sterol synthesis regulated in higher plants? Biochem. Soc. Trans. 11: 548–552.PubMedGoogle Scholar
  13. 13.
    GRAY, J.C. 1987. Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25–91.CrossRefGoogle Scholar
  14. 14.
    BACH, T.J., H.K. LICHTENTHALER. 1987. Plant growth regulation by mevinolin and other sterol biosynthesis inhibitors. ACS Symp. Ser. 325: 109–139.CrossRefGoogle Scholar
  15. 15.
    NES, W.R., M.L. MCKEAN. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, p.690.Google Scholar
  16. 16.
    BLOCH, K.E. 1983. Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14: 47–92.PubMedCrossRefGoogle Scholar
  17. 17.
    OURISSON, G., M. ROHMER, K. PORALLA. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann. Rev. Microbiol. 41: 301–333.CrossRefGoogle Scholar
  18. 18.
    SANDOR, T., S. SONEA. 1975. Are steroids universal biomolecules? Biochem. Soc. Trans. 3: 1157–1159.Google Scholar
  19. 19.
    CALVIN, M. 1969. Chemical evolution. Clarendon Press, Oxford, p.200.Google Scholar
  20. 20.
    VAN TAMELEN, E.E. 1968. Bioorganic chemistry: sterols and cyclic terpene terminal epoxides. Acc. Chem. Res. 1: 111–120.CrossRefGoogle Scholar
  21. 21.
    JOHNSON, W.S. 1976. Biomimetic polyene cyclizations: a review. Bioorgan. Chem. 5: 51–98.CrossRefGoogle Scholar
  22. 22.
    RUZICKA, L. 1959. History of the iosprene rule. Proc. Chem Soc. 341–360.Google Scholar
  23. 23.
    KERWIN, J.L., N.D. DUDDLES. 1989 Reassessment of the role of phospholipids in sexual reproduction by sterol-auxotrophic fungi. J. Bacteriol. 171: 3831–3839.PubMedGoogle Scholar
  24. 24.
    NES, W.D., P.K. HANNERS, E.J. PARISH. 1986. Control of fungal sterol C-24 transalkylation: importance to developmental regulation. Biochem. Biophys. Res. Commmun. 139: 410–415.PubMedCrossRefGoogle Scholar
  25. 25.
    NES, W.D., G.A. SAUNDERS, E. HEFTMANN. 1982. Role of steroids and triterpenoids in the growth and reproduction of Phytophthora cactorum. Lipids 17: 178–183.CrossRefGoogle Scholar
  26. 26.
    NES, W.D., P.H. LE. 1988. Regulation of sterol biosynthesis in Saprolegnia ferax by 25-azacholesterol. Pest. Biochem. Physiol. 30: 87–94.CrossRefGoogle Scholar
  27. 27.
    NES, W.R., B.C. SEKULA, W.D. NES, J.H. ADLER. 1978. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253: 6218–6225.PubMedGoogle Scholar
  28. 28.
    NES, W.D., S. XU, W.F. HADDON. 1989. Evidence for similarities and differences in the biosynthesis of fungal sterols. Steroids 53: 533–558.PubMedCrossRefGoogle Scholar
  29. 29.
    NES, W.D., S. XU, E.J. PARISH. 1989. Metabolism of 24(R,S),25-epiminolanosterol to 25-aminolanosterol and lanosterol by Gibberella fujikuroi. Arch. Biochem. Biophys. 272: 323–331.PubMedCrossRefGoogle Scholar
  30. 30.
    CARTER, P.W.., I.M. HEILBRON, B. LYTHGOE. 1939. The lipochromes and sterols of the algal classes. Proc. Royal Soc. Lond. B. 128: 82–109.Google Scholar
  31. 31.
    LEVIN, E.Y., K. BLOCH. 1964. Absence of sterols in blue-green algae. Nature Lond. 202: 90–91.PubMedCrossRefGoogle Scholar
  32. 32.
    DESOUZA, N.J., W.R. NES. 1968. Sterols: isolation from a blue-green alga. Science 162: 363.CrossRefGoogle Scholar
  33. 33.
    REITZ, R.C., J.G. HAMILTON. 1968. The isolation and identification of two sterols from two species of blue-green algae. Comp. Biochem. Physiol. 25: 401–416.PubMedCrossRefGoogle Scholar
  34. 34.
    KAHLHASE, M., P. POHL. 1988. Saturated and unsaturated sterols of nitrogen-fixing blue-green algae (cyanobacteria). Phytochemistry 27: 1735–1740.CrossRefGoogle Scholar
  35. 35.
    BERGMANN, W. 1953. The plant sterols. Ann. Rev. Plant Physiol. 4: 383–426.CrossRefGoogle Scholar
  36. 36.
    KOHL, W., A. GLOE, H. REICHENBACH. 1983. Steroids from the nyxobacterium Nannocystis exedens. J. Gen. Microbiol. 129: 1629–1635.Google Scholar
  37. 37.
    BIRD, C.W., J.M. LYNCH, F.J. PIRT, W.W. REID, C.J.W. BROOKS, B.S. MIDDLEDITCH. 1971. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature Lond. 230: 473.PubMedCrossRefGoogle Scholar
  38. 38.
    PATT, T.E., R.S. HANSON. 1978. Intracytoplasmic membrane, phospholipid and sterol content of Methylbacterium organophilum cells grown under different conditions. J. Bacteriol. 134: 36–643.Google Scholar
  39. 39.
    NES, W.D., P.H. LE, L.R. BERG, G.W. PATTERSON, J.L. KERWIN. 1986. A comparison of cycloartenol and lanosterol biosynthesis and metabolism by the Oomycetes. Experientia 42: 556–558.CrossRefGoogle Scholar
  40. 40.
    XU, S., W.D. NES. 1988. Biosynthesis of cholesterol in the yeast mutant erg6. Biochem. Biophys. Res. Commun. 155: 509–517.Google Scholar
  41. 41.
    HEUPEL, R.C., Y. SAUVAIRE, P.H. LE, E.J. PARISH, W.D. NES. 1986. Sterol composition and biosynthesis in sorghum: importance to developmental regulation. Lipids 21: 69–75.CrossRefGoogle Scholar
  42. 42.
    POPJAK, G., A. MEENAN. 1987. Regulation of 3-hydroxyl-3-methyl glutaryl coenzyme A reductase: search for the enzyme repressor derived from mevalonate. Proc. R. Soc. Lond. B. 231: 391–414.PubMedCrossRefGoogle Scholar
  43. 43.
    NES, W.R., W.D. NES. 1980. Lipids in evolution. Plenum Press, New York, 240 pp.Google Scholar
  44. 44.
    VAN TAMELEN, E.E., 1982. Bioorganic characterization and mechanism of the 2,3-oxidosqualene→Lanosterol conversion. J. Amer. Chem. Soc. 104: 6480–6481.CrossRefGoogle Scholar
  45. 45.
    CORNFORTH, J.W. 1968. Olefin alkylation in biosynthesis. Angew. Chem. 7: 903–964.CrossRefGoogle Scholar
  46. 46.
    JOHNSON, W.S., S.J. TELFER, S. CHENG, U. SCHUBERT. 1987. Cation-stabilization auxiliaries: a new concept in biomimetic polyene cyclization. J. Amer. Chem. Soc. 109: 2517–2518.CrossRefGoogle Scholar
  47. 47.
    GOULD, S.J. 1977. Ontogeny and Phylogeny. Belknap Press, Cambridge, 501 pp.Google Scholar
  48. 48.
    DOBZHANSHY, T., F.J. AYALA, G.L. STEBBINS, J.W. VALENTINE. 1977. Evolution. Freeman and Co., San Francisco, 572 pp.Google Scholar
  49. 49.
    GOAD, L.J., T.W. GOODWIN. 1973. The biosynthesis of plant sterols. Prog. Phytochemistry 1: 113–198.Google Scholar
  50. 50.
    CAVALIER-SMITH, T. 1987. The origin of eukaryote and archaebacterial cells. Ann. New York Acad. Sci. 503: 17–54.CrossRefGoogle Scholar
  51. 51.
    BURDEN, R.S., D.T. COOKE, G.A. CARTER. 1989. Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry 28: 1791–1804.CrossRefGoogle Scholar
  52. 52.
    PATTERSON, G.W. 1987. Sterol synthesis and distribution and algal phylogeny. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd and W.D. Nes eds.), Plenum Press, New York, pp. 631–636.Google Scholar
  53. 53.
    KOKKE, W.C.M., J.N SCHOOLERY, W. FENICAL, C. DJERASSI. 1984. Biosynthetic studies of marine lipids. 4. Mechanism of side chain alkylation in (E)-24-propylidenecholesterol by a chrysophyte alga. J. Org. Chem. 49: 3742–3752.CrossRefGoogle Scholar
  54. 54.
    AKIHISA, T., T. TAMURA, T. MATSUMOTO, W.D.M.C. KOKKE, T. YOKOTA. 1989 Isolation of acetylenic sterols from a higher plant. Further evidence that marine sterols are not unique. J. Org. Chem. 54: 606–610.CrossRefGoogle Scholar
  55. 55.
    NES, W.D., P.H. LE. 1989. Evidence for separate intermediates in the biosynthesis of 24β-methyl sterol end products in Gibberella fujikuroi. Biochem. Biophys. Acta (in press).Google Scholar
  56. 56.
    PINTO, W.J., W.R. NES. 1983. Stereochemical specificity for sterols in Saccharomyces cerevisiae. J. Biol. Chem. 258: 4472–4476.PubMedGoogle Scholar
  57. 57.
    NES, W.D., R.C. HEUPEL. 1986. Physiological requirement for biosynthesis of multiple 24β-methylsterols in Gibberella fujikuroi. Arch. Biochem. Biophys. 244: 211–217.PubMedCrossRefGoogle Scholar
  58. 58.
    NES, W.R. 1971. Regulation of the sequencing in sterol biosynthesis. Lipids 6: 219–224.PubMedCrossRefGoogle Scholar
  59. 59.
    BAISTED, D.F., E. CAPSTACK, W.R. NES. 1962. The biosynthesis of β-amyrin and β-sitosterol in germinating seeds of Pisum sativum. Biochemistry 1: 537–541.PubMedCrossRefGoogle Scholar
  60. 60.
    BAISTED, D.J. 1971. Sterol and triterpene synthesis in the developing and germinating pea seed. Biochem J. 124: 375–383.PubMedGoogle Scholar
  61. 61.
    HEUPEL, R.C., W.D. NES, J.A. VERBEKE. 1987. Developmental regulation of sterol and pentacyclic triterpene biosynthesis and composition: A correlation with sorghum floral initiation. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp. 53–56.Google Scholar
  62. 62.
    SAUVAIRE, Y., B. TAL, R.C. HEUPEL, R. ENGLAND, P.K. HANNERS, W.D. NES, J.B. MUDD. 1987. The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp. 107–109.Google Scholar
  63. 63.
    GARG, V.K., W.R. NES. 1985. Changes in A5- and A7-sterols during germination and seedling development of Cucurbita maxima. Lipids 20: 876–883.CrossRefGoogle Scholar
  64. 64.
    AKIHISA, T., S. THAKUR, F.U. FOSENSTEIN, T. MATSUMOTO. 1985. Sterols of cucurbitaceae: the configuration of 24-alkyl-Δ5-, Δ7- and Δ8-sterols. Lipids 21: 39–47.CrossRefGoogle Scholar
  65. 65.
    KARUNEN, P., K. HAKALA, S. HEINONEN. 1984. Occurrence of esterified triterpenoids alcohols in the leaves of Pilosella officinarm. Physiol. Plant. 61: 243–250.CrossRefGoogle Scholar
  66. 66.
    SEKULA, B.C., W.R. NES. 1980. The identification of cholesterol and other steroids in Euphorbia pulcherimma. Phytochemistry 19: 1509–1512.Google Scholar
  67. 67.
    NODA, M., M. TANAKA, Y. SETO, T. AIBA, C. OKU. 1988. Occurrence of cholesterol as a major sterol component in leaf surface lipids. Lipids 23: 439–444.CrossRefGoogle Scholar
  68. 68.
    NES, W.D., T.J. BACH. 1985. Evidence for a mevalonate shunt in a tracheophyte. Proc R. Soc. Lond. B. 225: 425–444.CrossRefGoogle Scholar
  69. 69.
    RODRIQUEZ, R.J., C. LOW, C.D.K. BOTTEMA, L.W. PARKS. 1985. Multiple functions for sterols in Saccharomyces cerevisiae. Biochem. Biophys. Acta 837: 336–343.Google Scholar
  70. 70.
    NES, W.R., J.H. ADLER, J.T. BILLHEIMER, K.A. ERICKSON, J. JOSEPH, J.R. LANDREY, R. MARCACCIO-JOSEPH, K.S. RITTER, R.L. CONNER. 1982. A comparison of the biological properties of androst-5-en-3β-ols and 21-isopentyl-cholesterol with those of cholesterol. Lipids 17: 257–262.PubMedCrossRefGoogle Scholar
  71. 71.
    NES, W.R. 1987. Multiple roles for plant sterols. In: The metabolism, structure and function of plant lipids. (P.K. Stumpf, J.B. Mudd, W.D. Nes, eds.), Plenum Press, New York, pp 3–9.Google Scholar
  72. 72.
    NES, W.R. 1987. Structure-function relationships for sterols in Saccharomyces cerevislae. ACS Sump. Ser. 325: 254–267.Google Scholar
  73. 73.
    HAIGH, G., H.J. FöRSTER, K. BIEMANN, N.H. TATTRIE, J.R. COLVIN. 1973. Induction and orientation of bacterial cellulose microfibrils by a novel terpenoid from Acetobacter xylinum. Biochem. J. 135: 145–149.PubMedGoogle Scholar
  74. 74.
    CLEJAN, S., R. BITTMAN, S. ROTTEM. 1981. Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membrane of Mycoplasma capricolum. Biochemistry 20: 2200–2204.PubMedCrossRefGoogle Scholar
  75. 75.
    KRIEF, A. J., SCHAUDER, E. GUITTET, C.G. DUPEHOAT, J. LALLEMAND. 1987. About the mechanism of sterol biosunthesis. J. Amer. Chem Soc. 109: 7910–7911.CrossRefGoogle Scholar
  76. 76.
    VAN TAMELEN, E.E., J.R. HEYS. 1975. Enzymic epoxidation of squalene variants. J. Amer. Chem. Soc. 97: 1252–1253.CrossRefGoogle Scholar
  77. 77.
    NES, W.D., A.E. STAFORD. 1984. Side-chain structural requirements for sterol-induced regulation of Phytophthora cactorum physiology. Lipids. 19: 544–549.PubMedCrossRefGoogle Scholar
  78. 78.
    NES, W.D., A.E. STAFFORD. 1983. Evidence for metabolic and functional discrimination of sterol by Phytophthora cactorum. Proc. Natl. Acac. Sci. USA. 80: 3227–3231.CrossRefGoogle Scholar
  79. 79.
    NES, W.D., G.W. PATTERSON, G.A. BEAN. 1980. Effect of steric and nuclear changes in steroids and triterpenoids on sexual reproduction of Phytophthora cactorum. Plant Physiol. 66: 1008–1011.PubMedCrossRefGoogle Scholar
  80. 80.
    NES, W.D., P.K. HANNERS, G.A. BEAN, G.W. PATTERSON. 1982. Inhibition of growth and sitosterol-induced sexual reproduction in Phytophthora cactorum by steroidal alkaloids. Phytopathology 72: 447–450.CrossRefGoogle Scholar
  81. 81.
    NES, W.D., W.R. NES. 1983. Disassociation of oogonia formation from oospore production by sterols with varying side chain lengths. Experientia 39-: 276–278.Google Scholar
  82. 82.
    NES, W.D., 1984. Control of fungal physiology by polycyclic isopentenoids and its phylogenetic implications. In: Isopentenoids in plants: biochemiostry and function. (W.D. Nes, G. Fuller, L. Tsai, eds.), Dekker, New York, pp 267–290.Google Scholar
  83. 83.
    RUJANAVECH, C., D.F. SILBERT. 1986. LM cell growth and membrane lipid adaptations to sterol structure. J. Biol Chem. 261: 7196–7203.PubMedGoogle Scholar
  84. 84.
    DUAX, W.L., J.F. GRIFFIN, C. CHEER. 1989. Steroid conformational analyses based on X-ray crystal structure determination. In: Analysis of sterols and other biologically significant steroids, Academic Press, New York, pp. 203–221.Google Scholar
  85. 85.
    NES, W.D., R.Y. WONG, M. BENSON, J.R. LANDREY, W.R. NES. 1984. Rotational isomerism about the 17(20)-bond of steroids and euphoids as shown by the crystal structures of euphol and tirucallol. Proc. Natl. Acad. Sci. USA. 81: 5896–5900.PubMedCrossRefGoogle Scholar
  86. 86.
    PARISH, E.J., W.D. NES. 1988. Synthesis of new eqiminoisopenoids. Synth. Commun. 18: 221–226.CrossRefGoogle Scholar
  87. 87.
    TAL, B., W.D. NES. 1987. Regulation of sterol biosynthesis: Importance of the C-24 alkyl group to growth of sunflower suspension cultures. Plant Physiol. (suppl.) 83: 161.Google Scholar
  88. 88.
    HAUGHN, P.A., J.R. LENTON, L.J. GOAD. 1988. Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochemistry 27: 2491–2500.CrossRefGoogle Scholar
  89. 89.
    POPJAK, G., A. MEENAN, W.D. NES. 1987. Effects of 2,3-iminosqualene on cultured cells. Proc. R. Soc. Lond. B. 232: 273–387.PubMedCrossRefGoogle Scholar
  90. 90.
    POPJAK, G., A. MEENAN, E.J. PARISH, W.D. NES. 1989. Inhibition of cholesterol synthesis and cell growth by 24(R,S),25-iminolanosterol and triparinol in cultured rat hepatoma cells. J. Biol. Chem. 264: 6230–6238.PubMedGoogle Scholar
  91. 91.
    GABER, R.F., D.H. COPPLE, B.K. KENNEDY, M. VIDAL, M. BARD. 1989. Erg6 is essential for normal membrane function in Saccharomyces cerevisiae but is not required for the formation of the cell cycle. Mol. Cell. Biol. 9: (in press).Google Scholar
  92. 92.
    MCCAMMON, M.T., M. HARTMANN, C.D.K. BOTTEMA, L.W. PARKS. 1984. Sterol methylation in Saccharomyces cerevisiae. J. Bacteriol. 157: 475–483.PubMedGoogle Scholar
  93. 93.
    NES, W.R., I.C. DHANUKA. 1988. Inhibition of sterol synthesis by Δ5-sterols in a sterol auxotroph of yeast defective in oxidosqualene cyclase and cytochrome P-450. J. Biol. Chem. 263: 11844–11850.PubMedGoogle Scholar
  94. 94.
    TATON, M., P. BENVENISTE, A. RAHIER. 1986. N-[C1,5,8]-trimethyldecyl]-4a, 10-dimethyl-8-aZA-trans-decal-3β-ol, a novel potent inhibitor of 2,3-oxidosqualene cycloartenol and lanosterol cyclases. Biochem. Biophys. Res. Commun. 138: 764–770.PubMedCrossRefGoogle Scholar
  95. 95.
    BENVENISTE, P., M. BLADOCHE, M.F. COSTET, A. EHRHADT. 1984. Use of inhibitors of biosynthesis to study plasmalemma structure and function. In: Membranes and compartmentalization in the regulation of plant functions. (A. Boudet, G. Alibert, G. Marigo, P. Lea, eds.), Ann. Proc. Phytochem. Soc, Europe, 24: 283–300.Google Scholar
  96. 95a.
    BENVENISTE, P., M. BLADOCHE, M.F. COSTET, A. EHRHADT. 1984. Ann. Proc. Phytochem. Soc, Europe, 24: 283–300.Google Scholar
  97. 96.
    NES, W.D., M. BENSON, R.E. LUNDIN, P.H. LE. 1988. Conformational analysis of 9β, 19-cyclopropyl sterols: Detection of the pseudoplanar conformer by nuclear Overhauser effects and its functional implications. Proc. Natl. Acad. Sci., USA. 85: 5759–5763.PubMedCrossRefGoogle Scholar
  98. 97.
    DUAX, W.L., Z. WAWRZAK, J.F. GRIFFIN, C. CHEER. 1988. Sterol conformation and molecular properties. In: Biology of cholesterol. (P.Y. Yeagle, ed.), CRC. Press, Boca Raton, pp 1–18.Google Scholar
  99. 98.
    PROUDLOCK, J.W., L.W. WHEELDON, D.J. JOLLOW, A.W. LINNANE. 1968. Role of sterols in Saccharomyces cerevisiae. Biochim. Biophys. Acta 152: 434–437.PubMedGoogle Scholar
  100. 99.
    BUTTKE, T.M., K. BLOCH. 1981. Utilization and metabloism of methyl-sterol derivatives in the yeast mutant GL7. Biochemistry 20: 3267–3272.PubMedCrossRefGoogle Scholar
  101. 100.
    NES, W.D., R.A. NORTON, E.J. PARISH, A. MEENAN, G. POPJAK. 1989. Concerning the role of 24,25-dihydrolanosterol and lanosterol in sterol biosynthesis by cultured cells. Steroids 53: 461–475.PubMedCrossRefGoogle Scholar
  102. 101.
    XU, S., R.A. NORTON, F.G. CRUMLEY, W.D. NES. 1988. Comparison of the chromatographic properties of sterols, select additional steroids and triterpenoids: gravity flow colum liquid chromatography, thin-layer chromatography and high-performance liquid chromatography. J. Chromatogr. 4 52: 377–398.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. David Nes
    • 1
  1. 1.Plant and Fungal Lipid Research, Plant Physiology Research UnitRussell Research CenterAthensUSA

Personalised recommendations