Advertisement

Diterpenoid Phytoalexins: Biosynthesis and Regulation

  • Charles A. West
  • Augusto F. Lois
  • Karen A. Wickham
  • Yue-Ying Ren
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 24)

Abstract

Most fungal and bacterial plant pathogens can establish systemic infections in a very limited range of host plants. Thus, higher plants in general are able to resist infection by most of the fungal and bacterial phytopathogens they may encounter. In cases of general resistance during the interaction of a non-host plant with a microbial pathogen, no obvious symptoms develop in the plant. During other cases of interaction of a non-host plant, or resistant cultivars of a host plant, with a microbial pathogen, a limited necrotic lesion develops rapidly in the host plant after penetration of the microbe. This hypersensitive response is characterized by the rapid death of one or more plant cells at the site of microbial invasion, and the induction of production in still healthy plant cells immediately surrounding this site of a number of new metabolic products.1

Keywords

Castor Bean Rice Leave Isopentenyl Pyrophosphate Antifungal Substance Elicitor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DIXON, R.A. 1986. The phytoalexin response: elicitation, signalling and control of host gene expression. Biol. Rev. Cambridge Philos. Soc. 61:239–291.CrossRefGoogle Scholar
  2. 2.
    BAILEY, J.A., J. W. MANSFIELD, eds. 1982. Phytoalexins, John Wiley & Sons, New York.Google Scholar
  3. 3.
    BELL, J.N., T.B. RYDER, V.P.M. WINGATE, J. A. BAILEY, C. J. LAMB. 1986. Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plant-pathogen interaction. Mol. Cell. Biol. 6: 1615–1623.PubMedGoogle Scholar
  4. 4.
    PAXTON, J. D. 1981. Phytoalexins — a working redefinition. Phytopathol. Z. 101: 106–109.CrossRefGoogle Scholar
  5. 5.
    DIXON, R.A., P.M. DEY, C. J. LAMB 1983. Phytoalexins: enzymology and molecular biology. Adv. in Enz. and Related Area of Mol. Biol. 53: 1–126.Google Scholar
  6. 6.
    SWAIN, T. 1977. Secondary compounds as protective agents. Annu. Rev. Plant Physiol. 28:479–501.CrossRefGoogle Scholar
  7. 7.
    ROBINSON, D. R., C. A. WEST. 1970. Biosynthesis of cyclic diterpenes in extracts from seedlings of Ricinus communis L. II. Conversion of geranylgeranyl pyrophosphate into diterpene hydrocarbons and partial purification of cyclization enzymes. Biochemistry 9: 80–89.PubMedCrossRefGoogle Scholar
  8. 8.
    SITTON, D., C. A. WEST. 1975. Casbene: an anti-fungal diterpene produced in cell-free extracts of Ricinus communis seedlings. Phytochemistry 14: 1921–1925.CrossRefGoogle Scholar
  9. 9.
    OU, S.H. 1980. Pathogen variability and host resistance in rice blast disease. Annu. Rev. Phytopathol. 18: 167–187.CrossRefGoogle Scholar
  10. 10.
    CARTWRIGHT, D.W., P.W. LANGCAKE, R.J. PRYCE, D.W. LEWORTHY, J.P. RIDE. 1981. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 20: 535–537.CrossRefGoogle Scholar
  11. 11.
    KATO, T., C. KABUTO, N. SASAKI, M. TSUNAGAWA, H. AIZAWA, K. FUJITA, Y. KATO, Y. KITAHARA. 1973. Momilactones, growth inhibitors from rice, Oryza sativa L. Tet. Lett. 3861–3864.Google Scholar
  12. 12.
    TSUNAGAWA, M., A. OHBA, N. SASAKI, C. KABUTO, T. KATO, Y. KITAHARA, N. TAKAHASHI. 1976. Momilactone C-a minor constituent of growth inhibitors in rice husk. Tet. Lett. 1157–1158.Google Scholar
  13. 13.
    AKATSUKA, T., O. KODAMA, H. SEKIDO, Y. KONO, S. TAKEUCHI. 1985. Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: isolation, characterization and biological activities of oryzalexins. Agrie. Biol. Chem. 49: 1689–1694.CrossRefGoogle Scholar
  14. 14.
    KONO, Y., S. TAKEUCHI, O. KODAMA, H. SEKIDO, T. AKATSUKA. 1985. Novel phytoalexins (oryzalexins A, B and C) from rice blast leaves infected with Pyricularia oryzae. Part II: structural studies with oryzalexins. Agric. Biol. Chem. 49: 1695–1701.CrossRefGoogle Scholar
  15. 15.
    KONO, Y., S. TAKEUCHI, O. KODAMA, T. AKATSUKA. 1984. Absolute configuration of oryzalexin A and structures of its related phytoalexins isolated from rice blast leaves infected with Pyricularia oryzae. Agric. Biol. Chem. 48: 253–255.CrossRefGoogle Scholar
  16. 16.
    SEKIDO, H., T. ENDO, R. SUGA, O. KODAMA, T. AKATSUKA, Y. KONO, S. TAKEUCHI. 1986. Oryzalexin D (3,7-dihydroxy-(+) sandaracopimaradiene), a new phytoalexin isolated from blast infected rice leaves. J. Pesticide Sci. 11: 369–372.CrossRefGoogle Scholar
  17. 17.
    KODAMA, O., T. SUZUKI, J. MIYAKAWA, T. AKATSUKA. 1988. Ultraviolet-induced accumulation of phytoalexins in rice leaves. Agric. Biol. Chem. 52: 2469–2473.CrossRefGoogle Scholar
  18. 18.
    KODAMA, O., A. YAMADA, A. YAMAMOTO, T. TAKEMOTO, T. AKATSUKA. 1988. Induction of phytoalexins with heavy metal ions in rice leaves. Nippon Noyaku Gakkaishi 13: 615–617.Google Scholar
  19. 19.
    DUEBER, M.T., W. ADOLF, C. A. WEST. 1978. Biosynthesis of the diterpene phytoalexin casbene. Partial purification and characterization of casbene synthetase from Ricinus communis. Plant Physiol. 62: 598–603.PubMedCrossRefGoogle Scholar
  20. 20.
    DUDLEY, M. W., M. T. DUEBER, C.A. WEST. 1986. Biosynthesis of the macrocyclic diterpene in castor bean (Ricinus communis L) seedlings. Changes in enzyme levels induced by fungal infection and intracellular localization of the pathway. Plant Physiol. 81: 335–342.PubMedCrossRefGoogle Scholar
  21. 21.
    GREEN, T.R., C.A. WEST. 1974. Purification and characterization of two forms of geranyl transferase from Ricinus communis. Biochemistry 13: 4720–4729.PubMedCrossRefGoogle Scholar
  22. 22.
    DUDLEY, M.W., T.R. GREEN, C.A. WEST. 1986. Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings. The purification and properties of farnesyl transferase from elicited seedlings. Plant Physiol. 81: 343–348.PubMedCrossRefGoogle Scholar
  23. 23.
    WEST, C.A., 1981. Biosynthesis of diterpenes. Chapter 7 In: Biosynthesis of Isoprenoid Compounds. (J. W. Porter, S. L. Spurgeon, eds.), Vol. 1, John Wiley & Sons, New York. pp. 376–411.Google Scholar
  24. 24.
    MOESTA, P., C.A. WEST. 1985. Casbene synthetase: regulation of phytoalexin biosynthesis in Ricinus communis L. seedlings. Purification of casbene synthetase and regulation of its biosynthesis during elicitation. Arch. Biochem. Biophys. 238: 325–333.PubMedCrossRefGoogle Scholar
  25. 25.
    PARGELLIS, C.A.. 1983. Studies of the prenyl transferases from organelles of Ricinus communis L. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  26. 26.
    STEKOLL, M., C.A. WEST. 1978. Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol. 61: 38–45.PubMedCrossRefGoogle Scholar
  27. 27.
    LEE, S.C., C.A. WEST. 1981. Polygalacturonase from Rhizopus stolonifer, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings. Plant Physiol. 67: 633–639.PubMedCrossRefGoogle Scholar
  28. 28.
    LEE, S.C., C.A. WEST. 1981. Properties of Rhizopus stolonifer polygalacturonase, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings. Plant Physiol. 67: 640–645.PubMedCrossRefGoogle Scholar
  29. 29.
    BRUCE, R.J., C.A. WEST. 1982. Elicitation of casbene synthetase activity in castor bean. The role of pec-tic fragments of the plant cell wall in elicitation by a fungal endopolygalacturonase. Plant Physiol. 69: 1181–1188.PubMedCrossRefGoogle Scholar
  30. 30.
    WEST, C.A., P. MOESTA, D.F. JIN, A.F. LOIS, K.A. WICKHAM. 1985. The role of pectic fragments of the plant cell wall in the response to biological stresses. In: Cellular and Molecular Biology of Plant Stress, UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 22, (J.L. Key, T. Kosuge, eds.), Alan R. Liss, New York. pp. 335–349.Google Scholar
  31. 31.
    WALKER-SIMMONS, M., D. JIN, C.A. WEST, L. HADWIGER, C.A. RYAN. 1984. Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol. 76: 833–836.PubMedCrossRefGoogle Scholar
  32. 32.
    JIN, D.F., C.A. WEST. 1984. Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol. 74: 989–992.PubMedCrossRefGoogle Scholar
  33. 33.
    LOIS, A.F. 1988. Regulation of the casbene synthetase gene during elicitation of castor bean seedlings with pectic fragments. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  34. 34.
    CHAPPELL, J., K. HAHLBROCK. 1984. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311: 76–78.CrossRefGoogle Scholar
  35. 35.
    LAWTON, M.A., C.J. LAMB. 1987. Transcriptional activation of plant defense genes by fungal elicitor, wounding, and infection. Mol. Cell. Biol. 7: 335–341.PubMedGoogle Scholar
  36. 36.
    MANIARA, G., R. LAINE, J. KUC. 1984. Oligosaccharides from Phytophthora infestans enhance the elicitation of sesquiterpenoid stress metabolites by arachidonic acid in potato. Physiol. Plant Pathol. 24: 177–186.CrossRefGoogle Scholar
  37. 37.
    DAVIS, K.R., A.G. DARVILL, P. ALBERSHEIM. 1986. Hostpathogen interactions. XXXI. Several biotic and abiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol. Biol. 6: 23–32.CrossRefGoogle Scholar
  38. 38.
    DAVIS, K.R., K. HAHLBROCK. 1987. Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol. 85: 1286–1290.CrossRefGoogle Scholar
  39. 39.
    SHECHTER, I., C.A. WEST. 1969. Biosynthesis of gibberellins. IV. Biosynthesis of cyclic diterpenes from trans-geranylgeranyl pyrophosphate. J. Biol. Chem. 244: 3200–3209.PubMedGoogle Scholar
  40. 40.
    WICKHAM, K.A. 1988. The biosynthesis of diterpenes in rice. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  41. 41.
    WICKHAM, K., C.A. WEST. 1987. Biosynthesis of diterpene phytoalexin precursors in cell-free extracts of rice. In: The Metabolism, Structure and Function of Plant Lipids. (P.K. Stumpf, J. B. Mudd, W.D. Nes, eds.), Plenum Publishing Corp., New York. pp. 123–125.Google Scholar
  42. 42.
    MATSUYAMA, N., S. WAKIMOTO. 1985. Purification and characterization of anti-blast substance, S-1, formed mainly in blast-resistant lower rice leaves. Ann. Phytopath. Soc. Japan 51: 498–500.CrossRefGoogle Scholar
  43. 43.
    MATSUYAMA, N., S. WAKIMOTO. 1988. Isolation and identification of diterpenoid anti-blast substances produced in the blast-infected rice leaves. Nippon Shokubutsu Byori Gakkaiho 54: 183–188.Google Scholar
  44. 44.
    FROST, R.G., C.A. WEST. 1977. Properties of kaurene synthetase from Marah macrocarpus. Plant Physiol. 59: 22–29.PubMedCrossRefGoogle Scholar
  45. 45.
    DUEBER, M.T. 1979. Studies of phytoalexin biosynthesis in castor beans: purification and characterization of casbene synthetase. Ph.D. Dissertation, University of California, Los Angeles.Google Scholar
  46. 46.
    DARVILL, A.G., P. ALBERSHEIM. 1984. Phytoalexins and their elicitors—a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275.CrossRefGoogle Scholar
  47. 47.
    BARBER, M.S., J.P. RIDE. 1988. A quantitative test for induced lignification in wounded wheat leaves and its use to survey potential elicitors of the response. Physiol. Mol. Plant Pathol. 32: 185–197.CrossRefGoogle Scholar
  48. 48.
    KUROSAKI, F., M. AMIN, A. NISHI. 1986. Induction of phytoalexin production and accumulation of phenolic compounds in cultured carrot cells. Physiol. Mol. Plant Pathol. 28: 359–370.CrossRefGoogle Scholar
  49. 49.
    ROBY D., A. GADELLE, A. TOPPAN. 1987. Chitin oligosac-charides as elicitors of chitinase activity in melon. Biochem. Biophys. Res. Commun. 143: 885–892.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Charles A. West
    • 1
  • Augusto F. Lois
    • 1
  • Karen A. Wickham
    • 1
  • Yue-Ying Ren
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations