Regulation of Monoterpene Biosynthesis in Higher Plants

  • Jonathan Gershenzon
  • Rodney Croteau
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 24)


Among the low molecular weight products of the mevalonate pathway in plants are the monoterpenes, the C10 representatives of the terpenoid family of natural products. Monoterpenes are colorless, lipophilic, volatile substances responsible for the characteristic odors of many plants. They have been reported from nearly 50 families of flowering plants,1 being best known as constituents of the essential oils of pines, mints and citrus fruits. Monoterpenes are classified as secondary metabolites because they do not appear to have any direct role in the basic processes of growth and development. Their functions in plants are still obscure, although, like other secondary metabolites, they may have ecological roles, serving as attractants to pollinators, allelopathic agents or defenses against predators and pathogens.


Glandular Trichome Resin Duct Terpenoid Biosynthesis Isopentenyl Pyrophosphate Monoterpene Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    BANTHORPE, D.V., B.V. CHARLWOOD. 1980. The terpenoids. In: Encyclopedia of Plant Physiology, New Series, Vol. 8, Secondary Plant Products. (E.A. Bell, B.V. Charlwood, eds.), Springer-Verlag, Berlin, pp. 185–220.Google Scholar
  2. 2.
    FAHN, A. 1979. Secretory Tissues in Plants. Academic Press, London, 302 pp.Google Scholar
  3. 3.
    CROTEAU, R. 1987. Biosynthesis and catabolism of monoterpenoids. Chem. Rev. 87: 929–954.Google Scholar
  4. 4.
    CROTEAU, R. 1988. Catabolism of monoterpenes in essential oil plants. In: Flavors and Fragrances: A World Perspective. (B.M. Lawrence, B.D. Mookherjee and B.J. Willis, eds.), Elsevier, Amsterdam, pp. 65–84.Google Scholar
  5. 5.
    PORTER, J.W., S.L. SPURGEON, eds. 1981. Biosynthesis of Isoprenoid Compounds, Vol. 1. John Wiley and Sons, New York, 558 pp.Google Scholar
  6. 6.
    DUGAN, R.E. 1981. Regulation of HMG-CoA reductase. In: Biosynthesis of Isoprenoid Compounds, Vol. 1. (J.W. Porter, S.L. Spurgeon, eds.), John Wiley and Sons, New York, pp. 95–159.Google Scholar
  7. 7.
    POULTER, C.D., H.C. RILLING. 1981. Prenyltransferases and isomerase. In: Biosynthesis of Isoprenoid Compounds, Vol. 1. (J.W. Porter, S.L. Spurgeon, eds.), John Wiley and Sons, New York, pp. 161–224.Google Scholar
  8. 8.
    CROTEAU, R. 1986. Biosynthesis of cyclic monoterpenes. In: Biogeneration of Aromas, ACS Symposium Series No. 317. (T.H. Parliment, R. Croteau, eds.), American Chemical Society, Washington, D.C., pp. 134–156.Google Scholar
  9. 9.
    GAMBLIEL, H., R. CROTEAU. 1984. Pinene cyclases I and II: Two enzymes from sage (Salvia officinalis) which catalyze stereospecific cyclizations of geranyl pyrophosphate to monoterpene olefins of opposite configuration. J. Biol. Chem. 259: 740–748.PubMedGoogle Scholar
  10. 10.
    CROTEAU, R., F. KARP. 1979. Biosynthesis of monoterpenes: Preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization. Arch. Biochem. Biophys. 198: 512–522.PubMedGoogle Scholar
  11. 11.
    CROTEAU, R., F. KARP. 1979. Biosynthesis of monoterpenes: Hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch. Biochem. Biophys. 198: 523–532.PubMedGoogle Scholar
  12. 12.
    CROTEAU, R., C.L. HOOPER, M. FELTON. 1978. Biosynthesis of monoterpenes: Partial purification and characterization of a bicyclic monoterpenol dehydrogenase from sage (Salvia officinalis). Arch. Biochem. Biophys. 188: 182–193.PubMedGoogle Scholar
  13. 13.
    KARP, F., J.L. HARRIS, R. CROTEAU. 1987. Metabolism of monoterpenes: Demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch. Biochem. Biophys. 256: 179–193.PubMedGoogle Scholar
  14. 14.
    LUCKNER, M. 1984. Secondary Metabolism in Microorganisms, Plants and Animals, 2nd edition. Springer-Verlag, Berlin, 576 pp.Google Scholar
  15. 15.
    TAKEUCHI, A., K. OBA, I. URITANI. 1977. Change in acetyl-CoA synthetase activity of sweet potato in response to infection by Ceratocystis fimbriata and injury. Agric. Biol. Chem. 41: 1141–1145.Google Scholar
  16. 16.
    TAKEUCHI, A., M. YAMAGUCHI, I. URITANI. 1981. ATP Citrate lyase from Ipomoea batatas root tissue infected with Ceratocystis fimbriata. Phytochemistry 20: 1235–1239.Google Scholar
  17. 17.
    SABINE, J.R., ed. 1983. 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase. CRC Press, Boca Raton, Florida, 271 pp.Google Scholar
  18. 18.
    RUSSELL, D.W. 1985. 3-Hydroxy-3-methylglutaryl-CoA reductases from pea seedlings. Meth. Enzymol. 110: 26–40.Google Scholar
  19. 19.
    SUZUKI, H., K. OBA, I. URITANI. 1975. The occurrence and some properties of 3-hydroxy-3-methylglutaryl coenzyme A reductase in sweet potato roots infected by Ceratocystis fimbriata. Physiol. Plant Pathol. 7: 2 65–276.Google Scholar
  20. 20.
    OBA, K., I. URITANI. 1979. Biosynthesis of furano-terpenes by sweet potato cell culture. Plant Cell Physiol. 20: 819–826.Google Scholar
  21. 21.
    OBA, K., K. KONDO, N. DOKE, I. URITANI. 1985. Induction of 3-hydroxy-3-methylglutaryl CoA reductase in potato tubers after slicing, fungal infection or chemical treatment, and some properties of the enzyme. Plant Cell Physiol. 26: 873–880.Google Scholar
  22. 22.
    STERMER, B.A., R.M. BOSTOCK. 1987. Involvement of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the regulation of sesquiterpenoid phytoalexin synthesis in potato. Plant Physiol. 84: 404–408.PubMedGoogle Scholar
  23. 23.
    VOGELI, U., J. CHAPPELL. 1988. Induction of sesquiterpene cyclase and suppression of squalene synthetase activities in plant cell cultures treated with fungal elicitor. Plant Physiol. 88: 1291–1296.PubMedGoogle Scholar
  24. 24.
    CHAPPELL, J., R. NABLE. 1987. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor. Plant Physiol. 85: 469–473.PubMedGoogle Scholar
  25. 25.
    BACH, T.J., H.K. LICHTENTHALER. 1982. Mevinolin: A highly specific inhibitor of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase of radish plants. Z. Naturforsch. 37c: 46–50.Google Scholar
  26. 26.
    CHAPPELL, J., C. VON LANKEN, U. VOGELI, P. BHATT. 1989. Sterol and sesquiterpenoid biosynthesis during a growth cycle of tobacco cell suspension cultures. Plant Cell Reports 8: 48–52.Google Scholar
  27. 27.
    LYNEN, F. 1967. Biosynthetic pathways from acetate to natural products. Pure Appl. Chem. 14: 137–167.PubMedGoogle Scholar
  28. 28.
    HEPPER, C.M., B.G. AUDLEY. 1969. The biosynthesis of rubber from 3-hydroxy-3-methylglutaryl-coenzyme A in Hevea brasiliensis latex. Biochem. J. 114: 379–386.PubMedGoogle Scholar
  29. 29.
    WITITSUWANNAKUL, R. 1986. Diurnal variation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in latex of Hevea brasiliensis and its relation to rubber content. Experientia 42: 44–45.Google Scholar
  30. 30.
    BACH, T.J. 1986. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21: 82–88.PubMedGoogle Scholar
  31. 31.
    NISHI, A., I. TSURITANI. 1983. Effect of auxin on the metabolism of mevalonic acid in suspension-cultured carrot cells. Phytochemistry 22: 399–401.Google Scholar
  32. 32.
    AREBALO, R.E., E.D. MITCHELL. 1984. Cellular distribution of 3-hydroxy-3-methylglutaryl coenzyme A reductase and mevalonate kinase in leaves of Nepeta cataria. Phytochemistry 23: 13–18.Google Scholar
  33. 33.
    BROOKER, J.D., D.W. RUSSELL. 1975. Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Pisum sativum seedlings. Arch. Biochem. Biophys. 167: 730–737.PubMedGoogle Scholar
  34. 34.
    CAMARA, B., F. BARDAT, O. DOGBO, J. BRANGEON, R. MONEGER. 1983. Terpenoid metabolism in plastids: Isolation and biochemical characteristics of Capsicum annuum chromoplasts. Plant Physiol. 73: 94–99.PubMedGoogle Scholar
  35. 35.
    RAMACHANDRA REDDY, A., V.S.R. DAS. 1986. Partial purification and characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase from the leaves of guayule (Parthenium argent atum). Phytochemistry 25: 2471–2474.Google Scholar
  36. 36.
    SUZUKI, H., I. URITANI. 1976. Subcellular localization of 3-hydroxy-3-methylglutaryl coenzyme A reductase and other membrane-bound enzymes in sweet potato roots. Plant Cell Physiol. 17: 691–700.Google Scholar
  37. 37.
    WONG, R.J., D.K. M.C. CORMACK, D.W. RUSSELL. 1982. Plastid 3-hydroxy-3-methylglutaryl coenzyme A reductase has distinctive kinetic and regulatory features: Properties of the enzyme and positive phytochrome control of activity in pea seedlings. Arch. Biochem. Biophys. 216: 631–638.PubMedGoogle Scholar
  38. 38.
    BACH, T.J., H.K. LICHTENTHALER. 1982. Inhibition of mevalonate biosynthesis and of plant growth by the fungal metabolite mevinolin. In: Biochemistry and Metabolism of Plant Lipids. (J.F.G.M. Wintermans, P.J.C. Kuiper, eds.), Elsevier Biomedical Press, Amsterdam, pp. 515–521.Google Scholar
  39. 39.
    BACH, T.J. 1987. Synthesis and metabolism of mevalonic acid in plants. Plant Physiol. Biochem. 25: 163–178.Google Scholar
  40. 40.
    ITO, R., K. OBA, I. URITANI. 1979. Mechanism for the induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase in HgCl2-treated sweet potato root tissue. Plant Cell Physiol. 20: 867–874.Google Scholar
  41. 41.
    OBA, K., H. TATEMATSU, K. YAMASHITA, I. URITANI. 1976. Induction of furano-terpene production and formation of the enzyme system from mevalonate to isopentenyl pyrophosphate in sweet potato root tissue injured by Ceratocystis fimbriata and by toxic chemicals. Plant Physiol. 58:5′-56.Google Scholar
  42. 42.
    NARITA, J.O., W. GRUISSEM. 1989. Tomato hydroxymethyl- glutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell 1: 181–190.PubMedGoogle Scholar
  43. 43.
    SIPAT, A.B. 1982. Hydroxymethylglutaryl CoA reductase (NADPH) in the latex of Hevea brasiliensis. Phytochemistry 21: 2613–2618.Google Scholar
  44. 44.
    SIPAT, A. 1985. 3-Hydroxy-3-methylglutaryl-CoA reductase in the latex of Hevea brasiliensis. Meth. Enzymol. 110: 40–51.Google Scholar
  45. 45.
    BACH, T.J., D.H. ROGERS, H. RUDNEY. 1986. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings. Eur. J. Biochem. 154: 103–111.PubMedGoogle Scholar
  46. 46.
    BROOKER, J.D., D.W. RUSSELL. 1975. Properties of microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase from Pisum sativum seedlings. Arch. Biochem. Biophys. 167: 723–729.PubMedGoogle Scholar
  47. 47.
    BACH, T.J., H.K. LICHTENTHALER. 1984. Application of modified Lineweaver-Burk plots to studies of kinetics and regulation of radish 3-hydroxy-3-methylglutaryl-CoA reductase. Biochim. Biophys. Acta. 794: 152–161.PubMedGoogle Scholar
  48. 48.
    CLEGG, R.J., B. MIDDLETON, G.D. BELL, D.A. WHITE. 1980. Inhibition of hepatic cholesterol synthesis and S-3-hydroxy-3-methylglutaryl-CoA reductase by mono and bicyclic monoterpenes administered in vivo. Biochem. Pharmacol. 29: 2125–2127.PubMedGoogle Scholar
  49. 49.
    QURESHI, A.A., W.R. MANGELS, Z.Z. DIN, C.E. ELSON. 1988. Inhibition of hepatic mevalonate biosynthesis by the monoterpene, d-limonene. J. Agric. Food Chem. 36: 1220–1224.Google Scholar
  50. 50.
    ELSON, C.E., G.L. UNDERBAKKE, P. HANSON, E. SHRAGO, R.H. WAINBERG, A.A. QURESHI. 1989. Impact of lemongrass oil, an essential oil, on serum cholesterol. Lipids 24: 677–679.PubMedGoogle Scholar
  51. 51.
    ISA, R.B.M., A.B. SIPAT. 1982. 3-Hydroxy-3-methylglutaryl CoA reductase of Hevea latex: The occurrence of a heat-stable activator in the C-serum. Biochem. Biophys. Res. Commun. 108: 206–212.PubMedGoogle Scholar
  52. 52.
    LEARNED, R.M., G.R. FINK. 1989. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc. Natl. Acad. Sci. USA 86: 2779–2783.PubMedGoogle Scholar
  53. 53.
    DUDLEY, M.W., M.T. DUEBER, C.A. WEST. 1986. Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings: Changes in enzyme levels induced by fungal infection and intracellular localization of the pathway. Plant Physiol. 81: 335–342.PubMedGoogle Scholar
  54. 54.
    ATKINSON, D.E. 1969. Regulation of enzyme function. Ann. Rev. Microbiol. 23: 47–68.Google Scholar
  55. 55.
    KNOTZ, J., R.C COOLBAUGH, C.A. WEST. 1977. Regulation of the biosynthesis of ent-kaurene from mevalonate in the endosperm of immature Marah macrocarpus seeds by adenylate energy charge. Plant Physiol. 60: 81–85.PubMedGoogle Scholar
  56. 56.
    SKILLETER, D.N., R.G.O. KEKWICK. 1971. The enzymes forming isopentenyl pyrophosphate from 5-phosphomevalonate (mevalonate 5-phosphate) in the latex of Hevea brasiliensis. Biochem. J. 124: 407–417.PubMedGoogle Scholar
  57. 57.
    OGURA, K., T. KOYAMA, T. SHIBUYA, T. NISHINO, S. SETO. 1969. Inhibitory effect of substrate analogs on isopentenyl pyrophosphate isomerase and prenyltransferase. J. Biochem. 66: 117–118.PubMedGoogle Scholar
  58. 58.
    LANDAU, B.R., H. BRUNEGRABER. 1985. Shunt pathway of mevalonate metabolism. Meth. Enzymol. 110: 100–114.PubMedGoogle Scholar
  59. 59.
    NES, W.D., T.J. BACH. 1985. Evidence for a mevalonate shunt in a tracheophyte. Proc. R. Soc. Lond. B 225: 425–444.Google Scholar
  60. 60.
    SKRUKRUD, C.L., S.E. TAYLOR, D.R. HAWKINS, E.K. NEMETHY, M. CALVIN. 1988. Subcellular fractionation of triterpenoid biosynthesis in Euphorbia lathyris latex. Physiol. Plant. 74: 306–316.Google Scholar
  61. 61.
    WEST, C.A., M.W. DUDLEY, M.T. DUEBER. 1979. Regulation of terpenoid biosynthesis in higher plants. Rec. Adv. Phytochem. 13: 163–198.Google Scholar
  62. 62.
    DUDLEY, M.W., T.R. GREEN, C.A. WEST. 1986. Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings: The purification and properties of farnesyl transferase from elicited seedlings. Plant Physiol. 81: 343–348.PubMedGoogle Scholar
  63. 63.
    OGURA, K., T. SHINKA, S. SETO. 1972. The purification and properties of geranylgeranyl pyrophosphate synthetase from pumpkin fruit. J. Biochem. 72: 1101–1108.PubMedGoogle Scholar
  64. 64.
    DE LA FUENTE, M., L.M. PEREZ, U. HASHAGEN, L. CHAYET, C. ROJAS, G. PORTILLA, O. CORI. 1981. Prenyltransferases from the flavedo of Citrus sinensis. Phytochemistry 20: 1551–1557.Google Scholar
  65. 65.
    PEREZ, L.M., R. LOZADA, O. CORI. 1983. Biosynthesis of allylic isoprenoid pyrophosphates by an enzyme preparation from the flavedo of Citrus paradisii. Phytochemistry 22: 431–433.Google Scholar
  66. 66.
    DOGBO, O., B. CAMARA. 1987. Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim. Biophys. Acta 92 0: 140–148.Google Scholar
  67. 67.
    CROTEAU, R., P.T. PURKETT. 1989. Geranyl pyrophosphate synthase: Characterization of the enzyme and evidence that this chain-length specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis). Arch. Biochem. Biophys. 271: 524–535.PubMedGoogle Scholar
  68. 68.
    CROTEAU, R., M.A. JOHNSON. 1984. Biosynthesis of terpenoids in glandular trichomes. In: Biology and Chemistry of Plant Trichomes. (E. Rodriguez, P.L. Healy, I. Mehta, eds.), Plenum Publishing Co., New York, pp. 133–185.Google Scholar
  69. 69.
    GERSHENZON, J., M. MAFFEI, R. CROTEAU. 1989. Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol. 89: 1351–1357.PubMedGoogle Scholar
  70. 70.
    GERSHENZON, J., M.A. DUFFY, F. KARP, R. CROTEAU. 1987. Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Anal. Biochem. 163: 159–164.PubMedGoogle Scholar
  71. 71.
    WIDMAIER, R., J. HOWE, P. HEINSTEIN. 1980. Prenyl-transferase from Gossypium hirsutum. Arch. Biochem. Biophys. 200: 609–616.PubMedGoogle Scholar
  72. 72.
    SAGAMI, H., K. OGURA, S. SETO, T. KUROKAWA. 1978. A new prenyltransferase from Micrococcus lysodeikticus. Biochem. Biophys. Res. Comm. 85: 572–578.PubMedGoogle Scholar
  73. 73.
    SAGAMI, H., K. OGURA. 1981. Geranylgeranyl pyrophosphate synthetase lacking geranyl-transferring activity from Micrococcus luteus. J. Biochem. 89: 1573–1580.PubMedGoogle Scholar
  74. 74.
    HEIDE, L., U. BERGER. 1989. Partial purification and properties of geranyl pyrophosphate synthase from Lithospermum erythrorhizon cell cultures. Arch. Biochem. Biophys. 273: 331–338.PubMedGoogle Scholar
  75. 75.
    PAULY, B., L. BELINGHERI, A. MARPEAU, M. GLEIZES. 1986. Monoterpene formation by leucoplasts of Citrofortunella mitis and Citrus unshiu: Steps and conditions of biosynthesis. Plant Cell Rep. 5: 19–22.Google Scholar
  76. 76.
    GLEIZES, M., G. PAULY, J.-P. CARDE, A. MARPEAU, C. BERNARD-DAGAN. 1983. Monoterpene hydrocarbon biosynthesis by isolated leucoplasts of Citrofortunella mitis. Planta 159: 373–381.Google Scholar
  77. 77.
    HEIDE, L. 1988. Geranylpyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. FEBS Lett. 237: 159–162.Google Scholar
  78. 78.
    BRUENGER, E., H.C. RILLING. 1988. Determination of isopentenyl diphosphate and farnesyl diphosphate in tissue samples with a comment on secondary regulation of polyisoprenoid biosynthesis. Anal. Biochem. 173: 321–327.PubMedGoogle Scholar
  79. 79.
    BANTHORPE, D.V., D.R.S. LONG, C.R. PINK. 1983. Biosynthesis of geraniol and related monoterpenes in Pelargonium graveolens. Phytochemistry 22: 2459–2463.Google Scholar
  80. 80.
    GREEN, T.R., D.J. BAISTED. 1971. Development of the squalene-synthesizing system during early stages of pea seed germination. Biochem. J. 125: 1145–1147.PubMedGoogle Scholar
  81. 81.
    GREEN, T.R., D.J. BAISTED. 1972. Development of the activities of enzymes of the isoprenoid pathway during early stages of pea-seed germination. Biochem. J. 130: 983–995.PubMedGoogle Scholar
  82. 82.
    BENEDICT, C.R. 1983. Biosynthesis of rubber. In: Biosynthesis of Isoprenoid Compounds, Vol. 2. (J.W. Porter, S.L. Spurgeon, eds.), John Wiley and Sons, New York, pp. 355–369.Google Scholar
  83. 83.
    RAMACHANDRA REDDY, A., V.S.R. DAS. 1988. Enhanced rubber accumulation and rubber transferase activity in guayule under water stress. J. Plant Physiol. 133: 152–155.Google Scholar
  84. 84.
    MADHAVAN, S., G.A. GREENBLATT, M.A. FOSTER, C.R. BENEDICT. 1989. Stimulation of isopentenyl pyrophosphate incorporation into polyisoprene in extracts from guayule plants (Parthenium argentatum Gray) by low temperature and 2-(3, 4-dichlorophenoxy) triethylamine. Plant Physiol. 89: 506–511.PubMedGoogle Scholar
  85. 85.
    ARCHER, B.L., B.G. AUDLEY. 1987. New aspects of rubber biosynthesis. Bot. J. Linn. Soc. 94: 181–196.Google Scholar
  86. 86.
    LEUBE, J., H. GRISEBACH. 1983. Further studies on induction of enzymes of phytoalexin synthesis in soybean and cultured soybean cells. Z. Naturforsch. 38c: 730–735.Google Scholar
  87. 87.
    TIETJEN, K.G., U. MATERN. 1983. Differential response of cultured parsley cells to elicitors from two nonpathogenic strains of fungi. 2. Effects on enzyme activities. Eur. J. Biochem. 131: 409–413.PubMedGoogle Scholar
  88. 88.
    HEIDE, L., M. TABATA. 1987. Geranylpyrophosphate:p-hydroxybenzoate geranyltransferase activity in extracts of Lithospermum erythrorhizon cell cultures. Phytochemistry 26: 1651–1655.Google Scholar
  89. 89.
    CROTEAU, R., A.J. BURBOTT, W.D. LOOMIS. 1972. Biosynthesis of mono- and sesquiterpenes in peppermint from glucose-14C and 14CO2 . Phytochemistry 11: 2459–2467.Google Scholar
  90. 90.
    CHARLWOOD, B.V., D.V. BANTHORPE. 1978. The biosynthesis of monoterpenes. In: Progress in Phytochemistry, Vol. 5. (L. Reinhold, J.B. Harborne, T. Swain, eds.), Pergamon Press, Oxford, pp. 65–125.Google Scholar
  91. 91.
    SHAH, D.H., W.W. CLELAND, J.W. PORTER. 1965. The partial purification, properties, and mechanisms of action of pig liver isopentenyl pyrophosphate isomerase. J. Biol. Chem. 240: 1946–1956.PubMedGoogle Scholar
  92. 92.
    STEIGER, A., U. MITZKA-SCHNABEL, W. RAU, J. SOLL, W. RUDIGER. 1985. Inhibition of geranylgeranyl diphosphate synthesis in in vitro systems. Phytochemistry 24: 739–743.Google Scholar
  93. 93.
    CROTEAU, R., M. FELTON, F. KARP, R. KJONAAS. 1981. Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol. 67: 820–824.PubMedGoogle Scholar
  94. 94.
    RAFFA, K.F., A.A. BERRYMAN. 1983. Physiological aspects of lodgepole pine wound responses to a fungal symbiont of the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. Ent. 115: 723–734.Google Scholar
  95. 95.
    MILLER, R.H., A.A. BERRYMAN, C.A. RYAN. 1986. Biotic elicitors of defense reactions in lodgepole pine. Phytochemistry 25: 611–612.Google Scholar
  96. 96.
    CROTEAU, R., S. GURKEWITZ, M.A. JOHNSON, H.J. FISK. 1987. Biochemistry of oleoresinosis: Monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carbohydrate elicitors. Plant Physiol. 85: 1123–1128.PubMedGoogle Scholar
  97. 97.
    EL-KELTAWI, N.E., R. CROTEAU. 1987. Influence of foliar applied cytokinins on growth and essential oil content of several members of the Lamiaceae. Phytochemistry 26: 891–895.Google Scholar
  98. 98.
    MAURER, K.-H., D. MECKE. 1986. Regulation of enzymes involved in the biosynthesis of the sesquiterpene antibiotic pentalenolactone in Streptomyces arenae. J. Antibiotics 39: 266–271.Google Scholar
  99. 99.
    THRELFALL, D.R., I.M. WHITEHEAD. 1988. Co-ordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry 27: 2567–2580.Google Scholar
  100. 100.
    BRINDLE, P.A., P.J. KUHN, D.R. THRELFALL. 1988. Biosynthesis and metabolism of sesquiterpenoid phytoalexins and triterpenoids in potato cell suspension cultures. Phytochemistry 27: 133–150.Google Scholar
  101. 101.
    MOESTA, P., C.A. WEST. 1985. Casbene synthetase: Regulation of phytoalexin biosynthesis in Ricinus communis L. seedlings. Arch. Biochem. Biophys. 238: 325–333.PubMedGoogle Scholar
  102. 102.
    CANE, D.E., C. PARGELLIS. 1987. Partial purification and characterization of pentalenene synthase. Arch. Biochem. Biophys. 254: 421–429.PubMedGoogle Scholar
  103. 103.
    CROTEAU, R., F. KARP. 1976. Biosynthesis of monoterpenes: Enzymatic conversion of neryl pyrophosphate to 1,8-cineole, α-terpineol, and cyclic monoterpene hydrocarbons by a cell-free preparation from sage (Salvia officinalis). Arch. Biochem. Biophys. 176: 734–746.PubMedGoogle Scholar
  104. 104.
    CROTEAU, R., F. KARP. 1977. Biosynthesis of monoterpenes: Partial purification and characterization of 1,8-cineole synthetase from Salvia officinalis. Arch. Biochem. Biophys. 179: 257–265.PubMedGoogle Scholar
  105. 105.
    POULOSE, A.J., R. CROTEAU. 1978. γ-Terpinene synthetase: A key enzyme in the biosynthesis of aromatic monoterpenes. Arch. Biochem. Biophys. 191: 400–411.PubMedGoogle Scholar
  106. 106.
    WHITEHEAD, I.M., D.R. THRELFALL, D.F. EWING. 1989. 5-epi-Aristolochene is a common precursor of the sesquiterpenoid phytoalexins capsidiol and debneyol. Phytochemistry 28: 775–779.Google Scholar
  107. 107.
    ROGERS, L.J., S.P.J. SHAH, T.W. GOODWIN. 1968. Compartmentation of biosynthesis of terpenoids in green plants. Photosynthetica 2: 184–207.Google Scholar
  108. 108.
    RAMACHANDRA REDDY, A., V.S.R. DAS. 1987. Chloroplast autonomy for the biosynthesis of isopentenyl diphosphate in guayule (Partheniuzn argentatum Gray). New Phytol. 106: 457–464.Google Scholar
  109. 109.
    SCHULZE-SIEBERT, D., A. HEINTZE, G. SCHULTZ. 1987. Substrate flow from photosynthetic carbon metabolism to chloroplast isoprenoid synthesis in spinach: Evidence for a plastidic phosphoglycerate mutase. Z. Naturforsch. 42c: 570–580.Google Scholar
  110. 110.
    KREUZ, K., H. KLEINIG. 1981. On the compartmentation of isopentenyl diphosphate synthesis and utilization in plant cells. Planta 153: 578–581.Google Scholar
  111. 111.
    KREUZ, K., H. KLEINIG. 1984. Synthesis of prenyl lipids in cells of spinach leaf: Compartmentation of enzymes for formation of isopentenyl diphosphate. Eur. J. Biochem. 141: 531–535.PubMedGoogle Scholar
  112. 112.
    CARDE, J.-P. 1984. Leucoplasts: A distinct kind of organelles lacking typical 70S ribosomes and free thylakoids. Eur. J. Cell Biol. 34: 18–26.PubMedGoogle Scholar
  113. 113.
    SCHNEPF, E. 1974. Gland cells. In: Dynamic Aspects of Plant Ultrastructure. (A.W. Roberts, ed.), McGraw-Hill, New York, pp. 331–357.Google Scholar
  114. 114.
    BOSABALIDIS, A., I. TSEKOS. 1982. Ultrastructural studies on the secretory cavities of Citrus deliciosa Ten. I. Early stages of gland cell differentiation. Protoplasma 112: 55–62.Google Scholar
  115. 115.
    CHENICLET, C., J.-P. CARDE. 1985. Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: A correlative study. Israel J. Bot. 34: 219–238.Google Scholar
  116. 116.
    METTAL, U., W. BOLAND, P. BEYER, H. KLEINIG. 1988. Biosynthesis of monoterpene hydrocarbons by isolated chromoplasts from daffodil flowers. Eur. J. Biochem. 170: 613–616.PubMedGoogle Scholar
  117. 117.
    FALK, H., B. LIEDVOGEL, P. SITTE. 1974. Circular DNA in isolated chromoplasts. Z. Naturforsch. 29c: 541–544.Google Scholar
  118. 118.
    LIEDVOGEL, B., P. SITTE, H. FALK. 1976. Chromoplasts in the daffodil: Fine structure and chemistry. Cytobiologie 12: 155–174.Google Scholar
  119. 119.
    CHAYET, L., C. ROJAS, E. CARDEMIL, A.M. JABALQUINTO, R. VICUNA, O. CORI. 1977. Biosynthesis of monoterpene hydrocarbons from [l-3H]neryl pyrophosphate and [1-3H]geranyl pyrophosphate by soluble enzymes from Citrus limonum. Arch. Biochem. Biophys. 180: 318–327.PubMedGoogle Scholar
  120. 120.
    AMELUNXEN, F. 1965. Electronenmikroskopisch Untersuchungen an den Drusenschuppen von Mentha piperita L. Planta Med. 13: 457–473.Google Scholar
  121. 121.
    WOODING, F.B.P., D.H. NORTHCOTE. 1965. The fine structure of the mature resin cells of Pinus pinea. J. Ultrastr. Res. 13: 233–244.Google Scholar
  122. 122.
    BOSABALIDIS, A., I. TSEKOS. 1982. Glandular scale development and essential oil secretion in Origanum dictamnus L. Planta 156: 496–504.Google Scholar
  123. 123.
    CROTEAU, R., K.V. VENKATACHALAM. 1986. Metabolism of monoterpenes: Demonstration that (+)-cis-isopulegone, not piperitenone, is the key intermediate in the conversion of (-)-isopiperitenone to (+)-pulegone in peppermint (Mentha piperita). Arch. Biochem. Biophys. 249: 306–315.PubMedGoogle Scholar
  124. 124.
    CROTEAU, R., C.L. HOOPER. 1978. Metabolism of monoterpenes: Acetylation of (-)-menthol by a soluble enzyme preparation from peppermint (Mentha piperita) leaves. Plant Physiol. 61: 737–742.PubMedGoogle Scholar
  125. 125.
    POTTY, V.H., J.H. BRUEMMER. 1970. Oxidation of geraniol by an enzyme system from orange. Phytochemistry 9: 1003–1007.Google Scholar
  126. 126.
    KJONAAS, R., C. MARTINKUS-TAYLOR, R. CROTEAU. 1982. Metabolism of monoterpenes: Conversion of 1-menthone to 1-menthol and d-neomenthol by stereospecific dehydrogenases from peppermint (Mentha piperita) leaves. Plant Physiol. 69: 1013–1017.PubMedGoogle Scholar
  127. 127.
    KJONAAS, R.B., K.V. VENKATACHALAM, R. CROTEAU. 1985. Metabolism of monoterpenes: Oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperitenone by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch. Biochem. Biophys. 238: 49–60.PubMedGoogle Scholar
  128. 128.
    DEHAL, S.S., R. CROTEAU. 1987. Metabolism of monoterpenes: Specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch. Biochem. Biophys. 258: 287–291.PubMedGoogle Scholar
  129. 129.
    CROTEAU, R., C.L. HOOPER, M. FELTON. 1978. Biosynthesis of monoterpenes: Partial purification and characterization of bicyclic monoterpenol dehydrogenase from sage (Salvia officinalis). Arch. Biochem. Biophys. 188: 182–193.PubMedGoogle Scholar
  130. 130.
    CROTEAU, R., N.M. FELTON. 1980. Substrate specificity of monoterpenol dehydrogenases from Foeniculum vulgare and Tanacetum vulgare. Phytochemistry 19: 1343–1347.Google Scholar
  131. 131.
    BERNARD-DAGAN, C., G. PAULY, A. MARPEAU, M. GLEIZES, J.- P. CARDE, P. BARADAT. 1982. Control and compartmentation of terpene biosynthesis in leaves of Pinus pinaster. Physiol. Veg. 20: 775–795.Google Scholar
  132. 132.
    BELINGHERI, L., G. PAULY, M. GLEIZES, A. MARPEAU. 1988. Isolation by an aqueous two-polymer phase system and identification of endomembranes from Citrofortunella mitis fruits for sesquiterpene hydrocarbon synthesis. J. Plant Physiol. 132: 80–85.Google Scholar
  133. 133.
    GLEIZES, M., J.-P. CARDE, G. PAULY, C. BERNARD-DAGAN. 1980. In vivo formation of sesquiterpene hydrocarbons in the endoplasmic reticulum of pine. Plant Sci. Lett. 20: 79–90.Google Scholar
  134. 134.
    CROTEAU, R., A. GUNDY. 1984. Cyclization of farnesyl pyrophosphate to the sesquiterpene olefins humulene and caryophyllene by an enzyme system from sage (Salvia officinalis). Arch. Biochem. Biophys. 233: 838–841.PubMedGoogle Scholar
  135. 135.
    DEHAL, S.S., R. CROTEAU. 1988. Partial purification and characterization of two sesquiterpene cyclases from sage (Salvia officinalis) which catalyze the respective conversion of farnesyl pyrophosphate to humulene and caryophyllene. Arch. Biochem. Biophys. 261: 346–356.PubMedGoogle Scholar
  136. 136.
    CROTEAU, R., S.L. MUNCK, C.C. AKOH, H.J. FISK, D.M. SATTERWHITE. 1987. Biosynthesis of the sesquiterpene patchoulol from farnesyl pyrophosphate in leaf extracts of Pogostemon cablin (patchouli): Mechanistic considerations. Arch. Biochem. Biophys. 256: 56–68.PubMedGoogle Scholar
  137. 137.
    KUDAKASSERIL, G.J., L. LAM, E.J. STABA. 1987. Effect of sterol inhibitors on the incorporation of 14C-isopentenyl pyrophosphate into artemisinin by a cell-free system from Artemisia annua tissue cultures and plants. Planta Med. 280–284.Google Scholar
  138. 138.
    SIMCOX, P.D., D.T. DENNIS, C.A. WEST. 1975. Kaurene synthetase from plastids of developing plant tissues. Biochem. Biophys. Res. Comm. 66: 166–172.PubMedGoogle Scholar
  139. 139.
    RAILTON, I.D., B. FELLOWS, C.A. WEST. 1984. ent-Kaurene synthesis in chloroplasts from higher plants. Phytochemistry 23: 1261–1267.Google Scholar
  140. 140.
    LUCKNER, M., B. DIETTRICH, W. LERBS. 1980. Cellular compartmentation and channeling of secondary metabolism in microorganisms and higher plants. In: Progress in Phytochemistry, Vol. 6. (L. Reinhold, J.B. Harborne, T. Swain, eds.), Pergamon Press, Oxford, pp. 103–142.Google Scholar
  141. 141.
    SCHNEIDER, M.M., R. HAMPP, H. ZIEGLER. 1977. Envelope permeability to possible precursors of carotenoid biosynthesis during chloroplast-chromoplast transformation. Plant Physiol. 60: 518–520.PubMedGoogle Scholar
  142. 142.
    GLEIZES, M., B. CAMARA, J. WALTER. 1987. Some characteristics of terpenoid biosynthesis by leucoplasts of Citrofortunella mitis. Planta 170: 138–140.Google Scholar
  143. 143.
    REED, L.J., D.J. COX.. 1970. Multienzyme complexes. In: The Enzymes: Structure and Control, Vol. 1. (P.D. Boyer, ed.), Academic Press, New York, pp. 213–240.Google Scholar
  144. 144.
    STAFFORD, H.A. 1981. Compartmentation in natural product biosynthesis by multienzyme complexes. In: The Biochemistry of Plants, Vol. 7, Secondary Plant Products. (E.E. Conn, ed.), Academic Press, New York, pp. 117–137.Google Scholar
  145. 145.
    MAUDINAS, B., M.L. BUCHOLTZ, C. PAPASTEPHANOU, S.S. KATIYAR, A.V. BRIEDIS, J.W. PORTER. 1977. The partial purification and properties of a phytoene synthesizing enzyme system. Arch. Biochem. Biophys. 180: 354–362.PubMedGoogle Scholar
  146. 146.
    LUTZOW, M., P. BEYER. 1988. The isopentenyl-diphosphate A-isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts. Biochim. Biophys. Acta 959: 118–126.Google Scholar
  147. 147.
    LOOMIS, W.D., R. CROTEAU. 1973. Biochemistry and physiology of lower terpenoids. Rec. Adv. Phytochem. 6: 147–186.Google Scholar
  148. 148.
    CROTEAU, R., W.D. LOOMIS. 1972. Biosynthesis of mono-and sesquiterpenes in peppermint from mevalonate-2-14C. Phytochemistry 11: 1055–1066.Google Scholar
  149. 149.
    KEENE, C.K., G.J. WAGNER. 1985. Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol. 79: 1026–1032.PubMedGoogle Scholar
  150. 150.
    CROTEAU, R., W.D. LOOMIS. 1973. Biosynthesis of squalene and other triterpenes in Mentha piperita from mevalonate-2-14C. Phytochemistry 12: 1957–1965.Google Scholar
  151. 151.
    BERNARD-DAGAN, C., J. P. CARDE, M. GLEIZES. 1979. Etude des composes terpiniques au cours de la croissance des aiguilles du Pin maritime: comparaison de donnees biochimiques et ultrastructurales. Can. J. Bot. 57: 255–263.Google Scholar
  152. 152.
    BANTHORPE, D.V., O. EKUNDAYO. 1976. Biosynthesis of (+)-car-3-ene in Pinus species. Phytochemistry 15: 109–112.Google Scholar
  153. 153.
    HEINRICH, G., W. SCHULTZE, I. PFAB, M. BOTTGER. 1983. The site of essential oil biosynthesis in Poncirus trifoliata and Monarda fistulosa. Physiol. Veg. 21: 257–268.Google Scholar
  154. 154.
    FRANCIS, M.J.O., M. O’CONNELL. 1969. The incorporation of mevalonic acid into rose petal monoterpenes. Phytochemistry 8: 1705–1708.Google Scholar
  155. 155.
    STUBBS, J.M., M.J.O. FRANCIS. 1971. Electron microscopical studies of rose petal cells during flower maturation. Planta Med. 20: 211–218.PubMedGoogle Scholar
  156. 156.
    CROTEAU, R., A.J. BURBOTT, W.D. LOOMIS. 1972. Apparent energy deficiency in mono- and sesquiterpene biosynthesis in peppermint. Phytochemistry 11: 2937–2948.Google Scholar
  157. 157.
    MIHALIAK, C.A., D.E. LINCOLN. 1989. Changes in leaf mono- and sesquiterpene metabolism with nitrate availability and leaf age in Heterotheca subaxillaris. J. Chem. Ecol. 15: 1579–1588.Google Scholar
  158. 158.
    BURBOTT, A.J., W.D. LOOMIS. 1969. Evidence for metabolic turnover of monoterpenes in peppermint. Plant Physiol. 44: 173–179.PubMedGoogle Scholar
  159. 159.
    GLEIZES, M., G. PAULY, C. BERNARD-DAGAN, R. JACQUES. 1980. Effects of light on terpene hydrocarbon synthesis in Pinus pinaster. Physiol. Plant. 50: 16–20.Google Scholar
  160. 160.
    YAMAURA, T., S. TANAKA, M. TABATA. 1989. Light-dependent formation of glandular trichomes and monoterpenes in thyme seedlings. Phytochemistry 28: 741–744.Google Scholar
  161. 161.
    FIRMAGE, D.H. 1981. Environmental influences on the monoterpene variation in Hedeoma drummondii. Biochem. Syst. Ecol. 9: 53–58.Google Scholar
  162. 162.
    BURBOTT, A.J., W.D. LOOMIS. 1967. Effects of light and temperature on the monoterpenes of peppermint. Plant Physiol. 42: 20–28.PubMedGoogle Scholar
  163. 163.
    HORNOK, L. 1978. [cited in Bernath, J. 1986. Production ecology of secondary plant products. In: Herbs, Spices and Medicinal Plants: Recent Advances in Botany, Horticulture and Pharmacology, Vol. 1. (L.E. Craker, J.E. Simon, eds.), Oryx Press, Phoenix, Arizona, pp. 185–234.]Google Scholar
  164. 164.
    LINCOLN, D.E., J.H. LANGENHEIM. 1978. Effect of light and temperature on monoterpenoid yield and composition in Satureja douglasii. Biochem. Syst. Ecol. 6: 21–32.Google Scholar
  165. 165.
    TANAKA, S., T. YAMAURA, M. TABATA. 1987. Localization and biosynthetic regulation of monoterpenoids in thyme seedlings. Abstract, Bioflavour ‘87, International Conference, University of Wurzburg, West Germany, September 29–30, 1987.Google Scholar
  166. 166.
    TANAKA, S., T. YAMAURA, M. TABATA. 1988. Localization and photoregulation of monoterpenoid biosynthesis in thyme seedlings. In: Bioflavour ‘87: Analysis, Biochemistry, Biotechnology. (P. Schreier, ed.), Walter de Gruyter, Berlin, pp. 237–241.Google Scholar
  167. 167.
    LINCOLN, D.E., D. COUVET. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. Oecologia 78: 112–114.Google Scholar
  168. 168.
    FAJER, E.D., M.D. BOWERS, F.A. BAZZAZ. 1989. The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science 243: 1198–1200.PubMedGoogle Scholar
  169. 169.
    CROTEAU, R. 1977. Site of monoterpene biosynthesis in Majorana hortensis leaves. Plant Physiol. 59: 519–520.PubMedGoogle Scholar
  170. 170.
    KJONAAS, R., R. CROTEAU. 1983. Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species. Arch. Biochem. Biophys. 220: 79–89.PubMedGoogle Scholar
  171. 171.
    KARP, F., C.A. MIHALIAK, J.L. HARRIS, R. CROTEAU. 1990. Monoterpene biosynthesis: Specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata) and perilla (Perilla frutescens) leaves. Arch. Biochem. Biophys. (in press).Google Scholar
  172. 172.
    BANTHORPE, D.V. 1988. Monoterpenes and sesquiterpenes. In: Cell Culture and Somatic Cell Genetics, Vol. 5, Phytochemicals in Plant Cell Cultures. (F. Constabel, I.K. Vasil, eds.), Academic Press, San Diego, pp. 143–157.Google Scholar
  173. 173.
    CHARLWOOD, B.V., J.T. BROWN, C. MOUSTOU, G.S. MORRIS, K.A. CHARLWOOD. 1988. The accumulation of isoprenoid flavour compounds in plant cell cultures. In: Bioflavour ‘87: Analysis, Biochemistry, Biotechnology. (P. Schreier, ed.), Walter de Gruyter, Berlin, pp. 303–314.Google Scholar
  174. 174.
    MULDER-KRIEGER, T., R. VERPOORTE, A. BAERHEIM SVENDSEN, J.J.C. SCHEFFER. 1988. Production of essential oils and flavours in plant cell and tissue cultures. A review. Plant Cell, Tissue and Organ Culture 13: 85–154.Google Scholar
  175. 175.
    BECKER, H. 1970. Studies on the formation of volatile substances in plant tissue cultures. Biochem. Physiol. Pflanzen 161: 425–441.Google Scholar
  176. 176.
    BRICOUT, J., C. PAUPARDIN. 1975. Sur la composition de l’huile essentielle de Mentha piperita L. cultivee in vitro: influence de quelques facteurs sur sa synthese. C. R. Acad. Sci. Paris Ser. D 281: 383–386.Google Scholar
  177. 177.
    BRICOUT, J., M.-J. GARCIA-RODRIGUEZ, C. PAUPARDIN, R. SAUSSAY. 1978. Biosynthese de composes monoterpeniques par les tissus de quelques especes de Menthes cultivees in vitro. C. R. Acad. Sci. Paris Ser. D 287: 611–613.Google Scholar
  178. 178.
    WINK, M. 1984. Evidence for an extracellular lytic compartment of plant cell suspension cultures: The cell culture medium. Naturwiss. 71: 635–637.Google Scholar
  179. 179.
    BROWN, J.T., P.K. HEGARTY, B.V. CHARLWOOD. 1987. The toxicity of monoterpenes to plant cell cultures. Plant Sci. 48: 195–201.Google Scholar
  180. 180.
    CARRIERE, F., G. GIL, P. TAPIE, P. CHAGVARDIEFF. 1989. Biotransformation of geraniol by photoautotrophic, photomixotrophic and heterotrophic plant cell suspensions. Phytochemistry 28: 1087–1090.Google Scholar
  181. 181.
    BERGER, R.G., F. DRAWERT. 1988. Glycosylation of terpenols and aromatic alcohols by cell suspension cultures of peppermint (Mentha piperita L.). Z. Naturforsch. 43c: 485–490.Google Scholar
  182. 182.
    CORMIER, F., C. AMBID. 1987. Extractive bioconversion of geraniol by a Vitis vinifera cell suspension employing a two-phase system. Plant Cell Rep. 6: 427–430.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Jonathan Gershenzon
    • 1
  • Rodney Croteau
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullmanUSA

Personalised recommendations