Electronic Theory of Chemisorption

  • D. Spanjaard
  • M. C. Desjonquères
Part of the Physics of Solids and Liquids book series (PSLI)


In surface physics, one calls adsorption the accumulation at the solid-vapor interface of atoms or molecules coming from the gas phase. One usually classifies adsorption phenomena as two domains according to the energy E B involved in the bonding:
  1. 1.

    When |E B| ≲ 0.5 eV, the adsorbate is said to be physisorbed on the surface. In physisorption, the adsorbate binds to the substrate via van der Waals forces which are due to dipole-dipole interactions. A typical example is the rare-gas adsorption.

  2. 2.

    When |E B| ≳ 0.5 eV, the adsorbate is said to be chemisorbed. The bond between the adsorbate and the substrate is of chemical type, i.e., it involves sharing (covalent bond) or transfer (ionic bond) of electrons. This is the case for O, N, H,... on transition metals. This domain is obviously the most important in view of its practical applications (catalysis, corrosion,...) and we will limit ourselves to this phenomenon.



Green Function Electronic Theory Transition Series Dissociative Chemisorption Antibonding State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, D. A. Woodruff and T. A. Delchar, Modern Techniques of Surface Science, Cambridge Solid State Science Series, Cambridge University Press, Cambridge (1986).Google Scholar
  2. 2.
    J. E. Demuth, D. W. Jepsen, and P. M. Marcus, Phys. Rev. Lett. 31, 540 (1973);CrossRefGoogle Scholar
  3. 2a.
    J. E. Demuth, D. W. Jepsen, and P. M. Marcus, Phys. Rev. Lett. 32, 1182 (1974);CrossRefGoogle Scholar
  4. 2b.
    M. A. Van Hove and S. Y. Tong, J. Vac. Sci. Technol. 12, 230 (1975);CrossRefGoogle Scholar
  5. 2c.
    P. M. Marcus, J. E. Demuth, and D. W. Jepsen, Surf. Sci. 53, 501 (1975);CrossRefGoogle Scholar
  6. 2d.
    D. H. Rosenblatt, S. D. Kevan, J. G. Tobin, R. F. Davis, M. G. Mason, D. R. Denley, D. A. Shirley, Y. Huang, and S. Y. Tong, Phys. Rev. B 26, 1812 (1982).CrossRefGoogle Scholar
  7. 3.
    K. A. R. Mitchell, Surf. Sci. 149, 93 (1985).CrossRefGoogle Scholar
  8. 4.
    J. Sokolov, F. Jona, and P. M. Marcus, Solid State Commun. 49, 307 (1984) and references cited therein.CrossRefGoogle Scholar
  9. 5.
    M. R. Barnes and R. F. Willis, Phys. Rev. Lett. 41, 1729 (1978).CrossRefGoogle Scholar
  10. 6.
    I. Toyoshima and G. A. Somorjai, Catal. Rev. Sci. Eng. 19, 105 (1979).CrossRefGoogle Scholar
  11. 7.
    A. Menand and J. Gallot, Rev. Phys. Appl. 9, 323 (1974).CrossRefGoogle Scholar
  12. 8.
    G. Bolbach, Thesis, Paris (1982).Google Scholar
  13. 9.
    D. W. Bassett, Surf. Sci. 53, 74 (1975);CrossRefGoogle Scholar
  14. 9a.
    D. W. Bassett, J. Phys. C 9, 2491 (1976).CrossRefGoogle Scholar
  15. 10.
    H. W. Fink and G. Ehrlich, Surf. Sci. 143, 125 (1984).CrossRefGoogle Scholar
  16. 11.
    J. Cousty, Thesis, Orsay (1980).Google Scholar
  17. 12.
    G. Brodén, T. N. Rhodin, C. Brucker, R. Benbow, and Z. Hurych, Surf. Sci. 59, 593 (1976).CrossRefGoogle Scholar
  18. 13.
    J. R. Schrieffer, Proceedings of the International School of Physics, Enrico Fermi, Course LVIII, Dynamical Aspects of Surface Physics (F. O. Goodman, ed.), Compositori, Bologna (1974).Google Scholar
  19. 14.
    P. W. Anderson, Phys. Rev. 124, 41 (1961).CrossRefGoogle Scholar
  20. 15.
    T. B. Grimley, Proc. Phys. Soc. 90, 751; 92, 776 (1967).CrossRefGoogle Scholar
  21. 16.
    D. M. Newns, Phys. Rev., 178, 1123 (1969).CrossRefGoogle Scholar
  22. 17.
    M. C. Desjonquères, Thesis, Grenoble (1976).Google Scholar
  23. 18.
    M. J. Kelly, Surf. Sci. 43, 587 (1974).CrossRefGoogle Scholar
  24. 19.
    M. C. Desjonquères and F. Cyrot-Lackmann, Solid State Commun. 26, 271 (1978).CrossRefGoogle Scholar
  25. 20.
    J. Friedel, Philos. Mag., Suppl. 3, 446 (1954).Google Scholar
  26. 21.
    W. Brenig and K. Schönhammer, Z Phys. 267, 201 (1974).CrossRefGoogle Scholar
  27. 22.
    B. Bell and A. Madhukar, Phys. Rev. B 14, 4281 (1976).CrossRefGoogle Scholar
  28. 23.
    K. Schönhammer, Solid State Commun. 32, 51 (1977).CrossRefGoogle Scholar
  29. 24.
    M. Baldo, F. Flores, A. Martin-Rodero, G. Piccitto, and R. Pucci, Surf. Sci. 128, 237 (1983).CrossRefGoogle Scholar
  30. 25.
    M. Baldo, R. Pucci, F. Flores, G. Piccitto, and A. Martin-Rodero, Phys. Rev. B 28, 6640 (1983).CrossRefGoogle Scholar
  31. 26.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 41, 1608 (1978).CrossRefGoogle Scholar
  32. 27.
    B. Kjöllerström, D. J. Scalapino, and J. R. Schrieffer, Phys. Rev. 148, 665 (1966).CrossRefGoogle Scholar
  33. 28.
    K. Schönhammer, V. Hartung, and W. Brenig, Z Phys. B 22, 143 (1975).CrossRefGoogle Scholar
  34. 29.
    G. Piccitto, F. Siringo, M. Baldo, and R. Pucci, Surf. Sci. 167, 437 (1986).CrossRefGoogle Scholar
  35. 30.
    G. Tréglia, F. Ducastelle, and D. Spanjaard, J. Phys. (Paris) 41, 281 (1980).CrossRefGoogle Scholar
  36. 31.
    A. Martin-Rodero, F. Flores, M. Baldo, and R. Pucci, Solid State Commun. 44, 911 (1982).CrossRefGoogle Scholar
  37. 32.
    P. Schuck, Phys. Rev. B 13, 5225 (1976).CrossRefGoogle Scholar
  38. 33.
    M. C. Desjonquères and D. Spanjaard, J. Phys. C 15, 4007 (1982).CrossRefGoogle Scholar
  39. 34.
    M. C. Desjonquères and D. Spanjaard, J. Phys. C 16, 3389 (1983).CrossRefGoogle Scholar
  40. 35.
    C. Thuault-Cytermann, M. C. Desjonquères, and D. Spanjaard, J. Phys. C 16, 5689 (1983).CrossRefGoogle Scholar
  41. 36.
    F. Ducastelle, Thesis, Orsay (1972).Google Scholar
  42. 37.
    J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).CrossRefGoogle Scholar
  43. 38.
    R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845 (1972).CrossRefGoogle Scholar
  44. 39.
    J. P. Gaspard and F. Cyrot-Lackmann, J. Phys. C 6, 3077 (1973).CrossRefGoogle Scholar
  45. 40.
    G. Tréglia, Thesis, Orsay (1983).Google Scholar
  46. 41.
    J. Friedel and C. M. Sayers, J. Phys. (Paris) 38, 697 (1977).CrossRefGoogle Scholar
  47. 42.
    H. Ehrenreich and L. Hodges, Methods Comput. Phys. 8, 149 (1968).Google Scholar
  48. 43.
    Y. Boudeville, J. Rousseau-Violet, F. Cyrot-Lackmann, and S. N. Khanna, J. Phys. (Paris) 44, 433 (1983).Google Scholar
  49. 44.
    G. Tréglia, M. C. Desjonquères, F. Ducastelle, and D. Spanjaard, J. Phys. C 14, 4347 (1981).CrossRefGoogle Scholar
  50. 45.
    G. Tréglia, F. Ducastelle, and D. Spanjaard, J. Phys. (Paris) 43, 341 (1982).CrossRefGoogle Scholar
  51. 46.
    C. Guillot, C. Thuault, Y. Jugnet, D. Chauveau, R. Hoogewijs, J. Lecante, Tran Minh Duc, G. Tréglia, M. C. Desjonquères, and D. Spanjaard, J. Phys. C 15, 423 (1982);CrossRefGoogle Scholar
  52. 46a.
    C. Guillot, P. Roubin, J. Lecante, M. C. Desjonquères, G. Tréglia, D. Spanjaard, and Y. Jugnet, Phys. Rev. B 30, 5487 (1984).CrossRefGoogle Scholar
  53. 47.
    M. Bowker and D. A. King, Surf. Sci. 94, 564 (1980).CrossRefGoogle Scholar
  54. 48.
    R. Di Foggio and R. Gomer, Phys. Rev. Lett. 44, 1258 (1980).CrossRefGoogle Scholar
  55. 49.
    J. P. Jardin, M. C. Desjonquères, and D. Spanjaard, J. Phys. C 18, 1767 (1985).CrossRefGoogle Scholar
  56. 50.
    J. P. Jardin, M. C. Desjonquères, and D. Spanjaard, J. Phys. C 18, 5759 (1985).CrossRefGoogle Scholar
  57. 51.
    J. P. Bourdin, J. P. Ganachaud, J. P. Jardin, D. Spanjaard, and M. C. Desjonquères, J. Phys. F 18, 1801 (1988).CrossRefGoogle Scholar
  58. 52.
    M. J. Stott and E. Zaremba, Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
  59. 53.
    J. K. Nørskov and N. D. Lang, Phys. Rev. B 21, 2136 (1980).CrossRefGoogle Scholar
  60. 54.
    J. K. Nørskov, Phys. Rev. B 26, 2875 (1982).CrossRefGoogle Scholar
  61. 55.
    M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B 24, 3037 (1981).CrossRefGoogle Scholar
  62. 56.
    S. P. McGlynn, L. G. Vanquickenborne, M. Kinoshita, and D. G. Carroll, Introduction to Applied Quantum Chemistry, Holt, Rinehart, and Winston, New York (1972).Google Scholar
  63. 57.
    P. D. Offenhartz, Atomic and Molecular Orbital Theory, McGraw-Hill, New York (1970);Google Scholar
  64. 57a.
    J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill, New York (1970).Google Scholar
  65. 58.
    M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20, 837 (1952).CrossRefGoogle Scholar
  66. 59.
    J. E. Lennard-Jones, Trans. Faraday Soc. 28, 333 (1932).CrossRefGoogle Scholar
  67. 60.
    H. Eyring, J. Walter, and G. E. Kimball, in: Quantum Chemistry, Chap. XIII, Wiley, London (1967).Google Scholar
  68. 61.
    A. Gelb and M. J. Cardillo, Surf. Sci. 64, 197 (1977);CrossRefGoogle Scholar
  69. 61a.
    J. H. McCreery and G. Wolken Jr., J. Chem. Phys. 67, 2551 (1977);CrossRefGoogle Scholar
  70. 61b.
    G. F. Tantardini and M. Simonetta, Chem. Phys. Lett. 87, 420 (1982);CrossRefGoogle Scholar
  71. 61c.
    B. C. Khanra and S. K. Saha, Chem. Phys. Lett. 95, 217 (1983).CrossRefGoogle Scholar
  72. 62.
    J. K. Nørskov, H. Houmoller, P. K. Johansson, and B. I. Lundqvist, Phys. Rev. Lett. 46, 257 (1981).CrossRefGoogle Scholar
  73. 63.
    M. C. Desjonquères, J. P. Jardin, and D. Spanjaard, Surf. Sci., 204, 247 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • D. Spanjaard
    • 1
  • M. C. Desjonquères
    • 2
  1. 1.Laboratoire de Physique des SolidesUniversité Paris-SudOrsay CédexFrance
  2. 2.IRF/DPhG/PASCentre d’Etudes Nucléaires de SaclayGif-sur-Yvette CédexFrance

Personalised recommendations