Advertisement

Gas-Surface Interactions

Basic Thermodynamics and Recent Work on Sticking
  • T. B. Grimley
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

In this chapter an introduction is provided to two aspects of gas-solid interactions: classical and statistical thermodynamics of adsorption, and the quantum theory of sticking. The thermodynamics of adsorption finds applications principally, but not exclusively, to physisorption systems. Many chemisorption systems widely studied are irreversible; an equilibrium pressure is never measured. This does not mean that desorption of chemisorbed material is not studied. It is, but in an irreversible way, by temperature programmed desorption, for example.

Keywords

Partition Function Wave Packet Sticking Coefficient Sticking Probability Stick State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. King, Private communication.Google Scholar
  2. 2.
    K. Hermann and P. Bagus, Phys. Rev. B 16, 4195–4202 (1977).CrossRefGoogle Scholar
  3. 3.
    J. C. Tracy, J. Chem. Phys. 56, 2736–2742 (1972).CrossRefGoogle Scholar
  4. 4.
    W. A. Steele, The Interactions of Gases with Solid Surfaces, Pergamon Press, Oxford (1974).Google Scholar
  5. 5.
    J. G. Dash, Films on Solid Surfaces, Academic Press, New York (1975).Google Scholar
  6. 6.
    S. Cerny, in: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis (D. A. King and D. P. Woodruff, eds.), Vol. 2, pp. 1–57, Elsevier, Amsterdam (1983).Google Scholar
  7. 7.
    T. L. Hill, J. Chem. Phys. 17, 520–529 (1949);CrossRefGoogle Scholar
  8. 7a.
    T. L. Hill, Adv. Catal. 4, 212–263 (1952).Google Scholar
  9. 8.
    D. H. Everett, Trans. Faraday Soc. 46, 453–463, 942–957, 957–965 (1950); Proc. Chem. Soc. London, 38–51 (1957).CrossRefGoogle Scholar
  10. 9.
    R. G. Jones and A. W.-L. Tong, Surf. Sci. 188, 87–106 (1987).CrossRefGoogle Scholar
  11. 10.
    M. L. Goldberger and K. M. Watson, Collision Theory, Wiley, New York (1964).Google Scholar
  12. 11.
    R. D. Levine, Quantum Mechanics of Molecular Rate Processes, Oxford University Press, London (1969).Google Scholar
  13. 12.
    E. Merzbacher, Quantum Mechanics, Wiley, New York (1970).Google Scholar
  14. 13.
    G. P. Brivio and T. B. Grimley, Phys. Rev. B 35, 5969–5974 (1987).CrossRefGoogle Scholar
  15. 14.
    G. P. Brivio, Phys. Rev. B 35, 5975–5984 (1987).CrossRefGoogle Scholar
  16. 15.
    G. P. Brivio, T. B. Grimley, and A. Devescovi, J. Electron Spectrosc. Relat. Phenom. 45, 391–402 (1987).CrossRefGoogle Scholar
  17. 16.
    M. Persson and J. Harris, Surf. Sci. 187, 67–85 (1987).CrossRefGoogle Scholar
  18. 17.
    K. Schoenhammer and O. Gunnarsson, in: Many Body Phenomena at Surfaces (D. Langreth and H. Suhl, eds.), pp. 421–449, Academic Press, Orlando (1984).Google Scholar
  19. 18.
    B. A. Lippmann, Phys. Rev. 91, 264–270 (1956).CrossRefGoogle Scholar
  20. 19.
    J. I. Kaplan and E. Drauglis, Surf. Sci. 36, 1–14 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • T. B. Grimley
    • 1
  1. 1.Donnan LaboratoriesThe University of LiverpoolLiverpoolEngland

Personalised recommendations