Skip to main content

Part of the book series: Physics of Solids and Liquids ((PSLI))

  • 356 Accesses

Abstract

Thin films are of interest in industrial applications, and particularly in semiconductor devices technology.(1) From the physical point of view, they allow the study of two-dimensional systems, and their differences with three-dimensional states of matter. The confinement of particles in ultrathin layers places strong requirements on the quality of these layers: structural and chemical perfection, uniform and well-controlled thickness, uniformity of physical properties in the plane normal to the growth direction. Two major fabrication techniques have allowed the preparation of such high-quality thin films, namely, metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). Major advantages of growth from a vapor phase are lower growth temperatures avoiding contamination and impurity diffusion, the control of the thickness, and the easy doping over a wide range of concentrations. However, the MBE technique is best suited for the observation of nucleation processes, since the reactant species are directly deposited at known rates on the substrate surface from the very beginning of the experiment. This is not the case in a MOCVD experiment where the stabilization time of the flow might be relatively long, and the arrival of species to the substrate is by diffusion through the gas phase.(2) Indeed, the MBE technique has been used to grow a variety of elemental or compound semiconductor structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Grunthaner and A. Madhukar (eds.), Proc. First Int. Conf. on Metastable and Modulated Semiconductor Structures, Dec. 1982, Pasadena Calif., J. Vac. Sci. Technol. B1 (1983).

    Google Scholar 

  2. B. A. Joyce, Rep. Prog. Phys. 37, 363 (1974).

    CAS  Google Scholar 

  3. W. K. Burton, N. Cabrera, and F. C. Frank, Phil Trans. R. Soc. London, Scr. A 243, 299 (1951).

    Google Scholar 

  4. P. Bennema, J. Cryst. Growth 69, 182 (1984).

    CAS  Google Scholar 

  5. E. Bauer, Z Kristallogr. 110, 372 (1958).

    CAS  Google Scholar 

  6. R. Kern, G. Le Lay, and J. J. Métois, in: Current Topics in Materials Sciences (E. Kaldis, ed.), Vol. 3, p. 139, North-Holland, Amsterdam (1979).

    Google Scholar 

  7. J. G. Dash, Phys. Rev. B 15, 3136 (1977).

    CAS  Google Scholar 

  8. M. Volmer and A. Weber, Z Phys. Chem. 119, 227 (1926).

    Google Scholar 

  9. R. Becker and W. Doring, Ann. Phys. 24, 719 (1935).

    CAS  Google Scholar 

  10. T. L. Hill, Statistical Thermodynamics, Addison Wesley, Mass. (1960).

    Google Scholar 

  11. H. A. Wilson, Philos. Mag. 50, 238 (1900).

    Google Scholar 

  12. G. H. Gilmer and P. Bennema, J. Appl. Phys. 43, 1347 (1971).

    Google Scholar 

  13. H. J. Leamy, G. H. Gilmer, and K. A. Jackson, in: Surface Physics of Materials (J. B. Blakely, ed.), Vol. I, Academic Press, New York (1975).

    Google Scholar 

  14. G. H. Gilmer and J. Q. Broughton, J. Vac. Sci. Technol. B1, 298 (1983).

    Google Scholar 

  15. J. Frenkel, J. Phys. USSR 9, 392 (1945).

    CAS  Google Scholar 

  16. W. K. Burton and N. Cabrera, Disc. Farad. Soc. No. 5, 33, 40 (1949).

    Google Scholar 

  17. G. H. Gilmer, R. Ghez, and N. Cabrera,J. Cryst. Growth 8, 79 (1971).

    CAS  Google Scholar 

  18. G. H. Gilmer and H. H. Farrell, J. Appl. Phys. 47, 3792 (1976);

    CAS  Google Scholar 

  19. G. H. Gilmer and H. H. Farrell, J. Appl. Phys. 47, 4373 (1976).

    CAS  Google Scholar 

  20. F. C. Frank, Disc. Faraday Soc. No. 5, 48, 67 (1949).

    Google Scholar 

  21. W. K. Burton, N. Cabrera, and F. C. Frank, Nature 163, 398 (1949).

    CAS  Google Scholar 

  22. B. Van der Hoek, J. P. Van der Eerden, and P. Bennema, J. Cryst. Growth 56, 108 (1982).

    Google Scholar 

  23. G. Zinsmeister, Vacuum 16, 529 (1966).

    CAS  Google Scholar 

  24. G. Zinsmeister, Thin Solid Films 2, 497 (1968).

    Google Scholar 

  25. D. Walton, J. Chem. Phys. 37, 2182 (1962).

    CAS  Google Scholar 

  26. J. A. Venables, Philos. Mag. 27, 693 (1973).

    Google Scholar 

  27. J. A. Venables and G. L. Price, in: Epitaxial Growth (J. W. Matthews, ed.), Academic, New York (1975).

    Google Scholar 

  28. J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).

    Google Scholar 

  29. S. Stoyanov and D. Kashchiev, in: Current Topics in Materials (E. Kaldis, ed.), Vol. 7, p. 69 (1981).

    Google Scholar 

  30. S. V. Ghaisas and A. Madhukar, Phys. Rev. Lett. 56, 1066 (1986).

    CAS  Google Scholar 

  31. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    CAS  Google Scholar 

  32. J. P. Van der Eerden, P. Bennema, and T. A. Cherepanova, Prog. Crystal Growth Charact. 1, 219 (1978).

    Google Scholar 

  33. J. D. Weeks, G. H. Gilmer, and K. A. Jackson, J. Chem. Phys. 65, 712 (1976).

    CAS  Google Scholar 

  34. C. Van Leeuwen and F. H. Mischgofsky,J. Phys. A, 9, 1827 (1976).

    Google Scholar 

  35. A. Trayanov and D. Kashchiev, J. Cryst. Growth 78, 399 (1986).

    CAS  Google Scholar 

  36. D. Kashchiev, J. P. Van der Eerden, and C. Van Leeuwen,J. Cryst. Growth 40, 47 (1977).

    CAS  Google Scholar 

  37. F. F. Abraham and G. M. White, J. Appl. Phys. 41, 1841 (1970).

    Google Scholar 

  38. J. P. Chauvineau,J. Cryst. Growth 53, 505 (1981).

    CAS  Google Scholar 

  39. A. Madhukar, Surf. Sci. 132, 344 (1983).

    CAS  Google Scholar 

  40. A. Madhukar and S. V. Ghaisas, Appl. Phys. Lett. 47, 247 (1985).

    CAS  Google Scholar 

  41. N. Tsai, F. F. Abraham, and G. M. Pound, Surf. Sci. 77, 465 (1978).

    CAS  Google Scholar 

  42. C. Van Leeuwen and J. P. Van der Eerden, Surf. Sci. 64, 237 (1977).

    Google Scholar 

  43. G. H. Gilmer, J. Cryst. Growth 49, 465 (1980).

    CAS  Google Scholar 

  44. S. V. Ghaisas and A. Madhukar, J. Vac. Sci. Technol. B 3, 540 (1985).

    CAS  Google Scholar 

  45. J. Singh and A. Madhukar, J. Vac. Sci. Technol. 20, 716 (1982);

    CAS  Google Scholar 

  46. J. Singh and A. Madhukar, J. Vac. Sci. Technol. B1, 305 (1983).

    Google Scholar 

  47. J. Singh and A. Madhukar, Phys. Rev. Lett. 51, 794 (1983).

    CAS  Google Scholar 

  48. G. H. Gilmer, Science 208, 355 (1980).

    CAS  Google Scholar 

  49. H. J. Lemy and G. H. Gilmer,J. Cryst. Growth 24/25, 499 (1974).

    Google Scholar 

  50. A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. Kim, S. V. Ghaisas, and P. G. Newman, Appl. Phys. Lett. 46, 1148 (1985).

    CAS  Google Scholar 

  51. B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. Lee, and R. Fernandez, J. Vac. Sci. Technol. B3, 1317 (1985).

    Google Scholar 

  52. M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, J. Vac. Sci. Technol. B4, 590 (1986).

    Google Scholar 

  53. F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. M. Cho, W. C. Tang, and P. G. Newman, Appl. Phys. Lett. 48, 1009 (1986).

    CAS  Google Scholar 

  54. P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, J. Vac. Sci. Technol. B4, 890 (1986).

    Google Scholar 

  55. A. Madhukar, P. Chen, F. Voillot, M. Thomsen, J. Y. Kim, W. C. Tang, and S. V. Ghaisas, J. Cryst. Growth 81, 26 (1987).

    CAS  Google Scholar 

  56. R. H. Swendsen, P. J. Kortman, D. P. Landau, and H. Müller-Krumbhaar,J. Cryst. Growth 35, 73 (1976).

    CAS  Google Scholar 

  57. G. H. Gilmer,J. Cryst. Growth 35, 15 (1976).

    Google Scholar 

  58. A. E. Michaels, G. M. Pound, and F. F. Abraham, J. Appl. Phys. 45, 9 (1974).

    CAS  Google Scholar 

  59. J. P. Van der Eerden, R. L. Kalf, and C. Van Leeuwen, J. Cryst. Growth 35, 241 (1976).

    Google Scholar 

  60. U. Bertoci, J. Electrochem. Soc. 119, 822 (1972).

    Google Scholar 

  61. J. R. Arthur, J. Appl. Phys. 37, 3057 (1966);

    CAS  Google Scholar 

  62. J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).

    CAS  Google Scholar 

  63. J. R. Arthur, Surf. Sci. 43, 449 (1974).

    CAS  Google Scholar 

  64. A. Y. Cho, J. Appl. Phys. 41, 2780 (1970);

    CAS  Google Scholar 

  65. A. Y. Cho, J. Appl. Phys. 42, 2074 (1971).

    CAS  Google Scholar 

  66. C. T. Foxon, M. R. Boudary, and B. A. Joyce, Surf. Sci. 44, 69 (1974).

    CAS  Google Scholar 

  67. C. T. Foxon and B. A. Joyce, Surf. Sci. 50, 434 (1975);

    CAS  Google Scholar 

  68. C. T. Foxon and B. A. Joyce, Surf. Sci. 64, 293 (1977).

    CAS  Google Scholar 

  69. J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B2, 276 (1984);

    Google Scholar 

  70. J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B2, 576 (1984);

    Google Scholar 

  71. J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B3, 520 (1985).

    Google Scholar 

  72. M. Thomsen and A. Madhukar, J. Cryst. Growth 80, 275 (1987).

    CAS  Google Scholar 

  73. T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, J. Vac. Sci. Technol. A4 884 (1986).

    Google Scholar 

  74. J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press (1964).

    Google Scholar 

  75. T. Halicioglu, Phys. Status Solidi B 99, 347 (1980).

    CAS  Google Scholar 

  76. E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller,J. Cryst. Growth 70, 33 (1984).

    CAS  Google Scholar 

  77. W. A. Tiller,J. Cryst. Growth 70, 13 (1984).

    CAS  Google Scholar 

  78. T. Takai, T. Halicioglu, and W. A. Tiller, Surf. Sci. 164, 341 (1985).

    CAS  Google Scholar 

  79. F. Stillinger and T. Weber, Phys. Rev. B 31, 5262 (1985).

    CAS  Google Scholar 

  80. R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55, 2001 (1985).

    CAS  Google Scholar 

  81. D. K. Choi, T. Takai, S. Erkoc, T. Halicioglu, and W. A. Teller, J. Cryst. Growth 85, 9 (1987).

    CAS  Google Scholar 

  82. H. Balamane, T. Halicioglu, and W. A. Tiller,J. Cryst. Growth 85, 16 (1987).

    CAS  Google Scholar 

  83. B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).

    CAS  Google Scholar 

  84. J. M. Chavazas, A. Bonissent, and B. Mutaftschiev, J. Cryst Growth 76, 9 (1986).

    Google Scholar 

  85. A. Kobayashi, S. M. Paik, K. E. Khor, and S. Das Sarma, Surf. Sci. 174, 48 (1986).

    CAS  Google Scholar 

  86. A. Kobayashi, S. M. Paik, and S. Das Sarma, J. Vac. Sci. Technol. B4, 884 (1986).

    Google Scholar 

  87. M. J. P. Musgrave and J. A. Pople, Proc. R. Soc. London. Scr. A 268, 474 (1962).

    Google Scholar 

  88. P. N. Keating, Phys. Rev. 145, 637 (1966).

    CAS  Google Scholar 

  89. R. M. Martin, Phys. Rev. B 1, 4005 (1970).

    Google Scholar 

  90. V. Burket and N. L. Allinger, Molecular Mechanics, ACS Monographs 177 (1982).

    Google Scholar 

  91. T. Fukui, J. Appl. Phys. 57, 5188 (1985).

    CAS  Google Scholar 

  92. M. Ichimura and A. Sasaki, Jap. J. Appl. Phys. 25, 976 (1986).

    CAS  Google Scholar 

  93. F. C. Frank and J. H. Van der Merwe, Proc. R. Soc. London, Scr. A 198, 205, 216 (1949).

    CAS  Google Scholar 

  94. J. H. Van der Merwe, J. Appl. Phys. 34, 117 (1963).

    Google Scholar 

  95. C. A. B. Ball, Phys. Status Solidi 42, 357 (1970).

    CAS  Google Scholar 

  96. J. H. Van der Merwe, Surf. Sci. 31, 198 (1972).

    Google Scholar 

  97. J. W. Matthews, Epitaxial Growth, Academic Press, New York (1975).

    Google Scholar 

  98. K. Nishitani, K. Okhata, and T. Murotani,J. Electron. Mater. 12, 619 (1983).

    CAS  Google Scholar 

  99. P. P. Chow, D. K. Greenlaw, and D. Johnson, J. Vac. Sci. Technol. A1, 562 (1983).

    Google Scholar 

  100. H. A. Mar, N. Salansky, and K. T. Chee, Appl. Phys. Lett. 44, 898 (1984).

    CAS  Google Scholar 

  101. C. J. Summers, E. L. Mecks, and N. W. Cox, J. Vac. Sci. Technol. B2, 224 (1984).

    Google Scholar 

  102. G. Cohen Solal, F. Bailly, and M. Barbe, Appl. Phys. Lett. 49, 1519 (1986).

    Google Scholar 

  103. N. Otsuka, L. A. Kolodziejski, R. L. Gunshor, S. Datta, R. N. Bicknell, and J. F. Schetzina, Appl. Phys. Lett. 46, 860 (1985).

    CAS  Google Scholar 

  104. D. Estève, M. Djafari Rouhani, V. V. Pham, A. Amrani, and J. J. Simonne, Proc. SPIE 88 Conf. Advances in Semiconductor Physics and Device Applications, New Port Beach, Calif., 13–18 March (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rouhani, M.D., Estève, D. (1990). Growth Processes at Surfaces. In: Bortolani, V., March, N.H., Tosi, M.P. (eds) Interaction of Atoms and Molecules with Solid Surfaces. Physics of Solids and Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8777-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8777-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8779-4

  • Online ISBN: 978-1-4684-8777-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics