Advertisement

Growth Processes at Surfaces

Modeling and Simulations
  • M. Djafari Rouhani
  • D. Estève
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Thin films are of interest in industrial applications, and particularly in semiconductor devices technology.(1) From the physical point of view, they allow the study of two-dimensional systems, and their differences with three-dimensional states of matter. The confinement of particles in ultrathin layers places strong requirements on the quality of these layers: structural and chemical perfection, uniform and well-controlled thickness, uniformity of physical properties in the plane normal to the growth direction. Two major fabrication techniques have allowed the preparation of such high-quality thin films, namely, metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE). Major advantages of growth from a vapor phase are lower growth temperatures avoiding contamination and impurity diffusion, the control of the thickness, and the easy doping over a wide range of concentrations. However, the MBE technique is best suited for the observation of nucleation processes, since the reactant species are directly deposited at known rates on the substrate surface from the very beginning of the experiment. This is not the case in a MOCVD experiment where the stabilization time of the flow might be relatively long, and the arrival of species to the substrate is by diffusion through the gas phase.(2) Indeed, the MBE technique has been used to grow a variety of elemental or compound semiconductor structures.

Keywords

Molecular Beam Epitaxy Lattice Mismatch Metal Organic Chemical Vapor Deposition Monte Carlo Technique Incorporation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. Grunthaner and A. Madhukar (eds.), Proc. First Int. Conf. on Metastable and Modulated Semiconductor Structures, Dec. 1982, Pasadena Calif., J. Vac. Sci. Technol. B1 (1983).Google Scholar
  2. 2.
    B. A. Joyce, Rep. Prog. Phys. 37, 363 (1974).Google Scholar
  3. 3.
    W. K. Burton, N. Cabrera, and F. C. Frank, Phil Trans. R. Soc. London, Scr. A 243, 299 (1951).Google Scholar
  4. 4.
    P. Bennema, J. Cryst. Growth 69, 182 (1984).Google Scholar
  5. 5.
    E. Bauer, Z Kristallogr. 110, 372 (1958).Google Scholar
  6. 6.
    R. Kern, G. Le Lay, and J. J. Métois, in: Current Topics in Materials Sciences (E. Kaldis, ed.), Vol. 3, p. 139, North-Holland, Amsterdam (1979).Google Scholar
  7. 7.
    J. G. Dash, Phys. Rev. B 15, 3136 (1977).Google Scholar
  8. 8.
    M. Volmer and A. Weber, Z Phys. Chem. 119, 227 (1926).Google Scholar
  9. 9.
    R. Becker and W. Doring, Ann. Phys. 24, 719 (1935).Google Scholar
  10. 10.
    T. L. Hill, Statistical Thermodynamics, Addison Wesley, Mass. (1960).Google Scholar
  11. 11.
    H. A. Wilson, Philos. Mag. 50, 238 (1900).Google Scholar
  12. 12.
    G. H. Gilmer and P. Bennema, J. Appl. Phys. 43, 1347 (1971).Google Scholar
  13. 13.
    H. J. Leamy, G. H. Gilmer, and K. A. Jackson, in: Surface Physics of Materials (J. B. Blakely, ed.), Vol. I, Academic Press, New York (1975).Google Scholar
  14. 14.
    G. H. Gilmer and J. Q. Broughton, J. Vac. Sci. Technol. B1, 298 (1983).Google Scholar
  15. 15.
    J. Frenkel, J. Phys. USSR 9, 392 (1945).Google Scholar
  16. 16.
    W. K. Burton and N. Cabrera, Disc. Farad. Soc. No. 5, 33, 40 (1949).Google Scholar
  17. 17.
    G. H. Gilmer, R. Ghez, and N. Cabrera,J. Cryst. Growth 8, 79 (1971).Google Scholar
  18. 18.
    G. H. Gilmer and H. H. Farrell, J. Appl. Phys. 47, 3792 (1976);Google Scholar
  19. 18a.
    G. H. Gilmer and H. H. Farrell, J. Appl. Phys. 47, 4373 (1976).Google Scholar
  20. 19.
    F. C. Frank, Disc. Faraday Soc. No. 5, 48, 67 (1949).Google Scholar
  21. 20.
    W. K. Burton, N. Cabrera, and F. C. Frank, Nature 163, 398 (1949).Google Scholar
  22. 21.
    B. Van der Hoek, J. P. Van der Eerden, and P. Bennema, J. Cryst. Growth 56, 108 (1982).Google Scholar
  23. 22.
    G. Zinsmeister, Vacuum 16, 529 (1966).Google Scholar
  24. 23.
    G. Zinsmeister, Thin Solid Films 2, 497 (1968).Google Scholar
  25. 24.
    D. Walton, J. Chem. Phys. 37, 2182 (1962).Google Scholar
  26. 25.
    J. A. Venables, Philos. Mag. 27, 693 (1973).Google Scholar
  27. 26.
    J. A. Venables and G. L. Price, in: Epitaxial Growth (J. W. Matthews, ed.), Academic, New York (1975).Google Scholar
  28. 27.
    J. A. Venables, G. D. T. Spiller, and M. Hanbücken, Rep. Prog. Phys. 47, 399 (1984).Google Scholar
  29. 28.
    S. Stoyanov and D. Kashchiev, in: Current Topics in Materials (E. Kaldis, ed.), Vol. 7, p. 69 (1981).Google Scholar
  30. 29.
    S. V. Ghaisas and A. Madhukar, Phys. Rev. Lett. 56, 1066 (1986).Google Scholar
  31. 30.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).Google Scholar
  32. 31.
    J. P. Van der Eerden, P. Bennema, and T. A. Cherepanova, Prog. Crystal Growth Charact. 1, 219 (1978).Google Scholar
  33. 32.
    J. D. Weeks, G. H. Gilmer, and K. A. Jackson, J. Chem. Phys. 65, 712 (1976).Google Scholar
  34. 33.
    C. Van Leeuwen and F. H. Mischgofsky,J. Phys. A, 9, 1827 (1976).Google Scholar
  35. 34.
    A. Trayanov and D. Kashchiev, J. Cryst. Growth 78, 399 (1986).Google Scholar
  36. 35.
    D. Kashchiev, J. P. Van der Eerden, and C. Van Leeuwen,J. Cryst. Growth 40, 47 (1977).Google Scholar
  37. 36.
    F. F. Abraham and G. M. White, J. Appl. Phys. 41, 1841 (1970).Google Scholar
  38. 37.
    J. P. Chauvineau,J. Cryst. Growth 53, 505 (1981).Google Scholar
  39. 38.
    A. Madhukar, Surf. Sci. 132, 344 (1983).Google Scholar
  40. 39.
    A. Madhukar and S. V. Ghaisas, Appl. Phys. Lett. 47, 247 (1985).Google Scholar
  41. 40.
    N. Tsai, F. F. Abraham, and G. M. Pound, Surf. Sci. 77, 465 (1978).Google Scholar
  42. 41.
    C. Van Leeuwen and J. P. Van der Eerden, Surf. Sci. 64, 237 (1977).Google Scholar
  43. 42.
    G. H. Gilmer, J. Cryst. Growth 49, 465 (1980).Google Scholar
  44. 43.
    S. V. Ghaisas and A. Madhukar, J. Vac. Sci. Technol. B 3, 540 (1985).Google Scholar
  45. 44.
    J. Singh and A. Madhukar, J. Vac. Sci. Technol. 20, 716 (1982);Google Scholar
  46. 44a.
    J. Singh and A. Madhukar, J. Vac. Sci. Technol. B1, 305 (1983).Google Scholar
  47. 45.
    J. Singh and A. Madhukar, Phys. Rev. Lett. 51, 794 (1983).Google Scholar
  48. 46.
    G. H. Gilmer, Science 208, 355 (1980).Google Scholar
  49. 47.
    H. J. Lemy and G. H. Gilmer,J. Cryst. Growth 24/25, 499 (1974).Google Scholar
  50. 48.
    A. Madhukar, T. C. Lee, M. Y. Yen, P. Chen, J. Y. Kim, S. V. Ghaisas, and P. G. Newman, Appl. Phys. Lett. 46, 1148 (1985).Google Scholar
  51. 49.
    B. F. Lewis, F. J. Grunthaner, A. Madhukar, T. C. Lee, and R. Fernandez, J. Vac. Sci. Technol. B3, 1317 (1985).Google Scholar
  52. 50.
    M. Y. Yen, T. C. Lee, P. Chen, and A. Madhukar, J. Vac. Sci. Technol. B4, 590 (1986).Google Scholar
  53. 51.
    F. Voillot, A. Madhukar, J. Y. Kim, P. Chen, N. M. Cho, W. C. Tang, and P. G. Newman, Appl. Phys. Lett. 48, 1009 (1986).Google Scholar
  54. 52.
    P. Chen, J. Y. Kim, A. Madhukar, and N. M. Cho, J. Vac. Sci. Technol. B4, 890 (1986).Google Scholar
  55. 53.
    A. Madhukar, P. Chen, F. Voillot, M. Thomsen, J. Y. Kim, W. C. Tang, and S. V. Ghaisas, J. Cryst. Growth 81, 26 (1987).Google Scholar
  56. 54.
    R. H. Swendsen, P. J. Kortman, D. P. Landau, and H. Müller-Krumbhaar,J. Cryst. Growth 35, 73 (1976).Google Scholar
  57. 55.
    G. H. Gilmer,J. Cryst. Growth 35, 15 (1976).Google Scholar
  58. 56.
    A. E. Michaels, G. M. Pound, and F. F. Abraham, J. Appl. Phys. 45, 9 (1974).Google Scholar
  59. 57.
    J. P. Van der Eerden, R. L. Kalf, and C. Van Leeuwen, J. Cryst. Growth 35, 241 (1976).Google Scholar
  60. 58.
    U. Bertoci, J. Electrochem. Soc. 119, 822 (1972).Google Scholar
  61. 59.
    J. R. Arthur, J. Appl. Phys. 37, 3057 (1966);Google Scholar
  62. 59a.
    J. R. Arthur, J. Appl. Phys. 39, 4032 (1968).Google Scholar
  63. 60.
    J. R. Arthur, Surf. Sci. 43, 449 (1974).Google Scholar
  64. 61.
    A. Y. Cho, J. Appl. Phys. 41, 2780 (1970);Google Scholar
  65. 61a.
    A. Y. Cho, J. Appl. Phys. 42, 2074 (1971).Google Scholar
  66. 62.
    C. T. Foxon, M. R. Boudary, and B. A. Joyce, Surf. Sci. 44, 69 (1974).Google Scholar
  67. 63.
    C. T. Foxon and B. A. Joyce, Surf. Sci. 50, 434 (1975);Google Scholar
  68. 63a.
    C. T. Foxon and B. A. Joyce, Surf. Sci. 64, 293 (1977).Google Scholar
  69. 64.
    J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B2, 276 (1984);Google Scholar
  70. 64a.
    J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B2, 576 (1984);Google Scholar
  71. 64a.
    J. Singh and K. K. Bajaj, J. Vac. Sci. Technol. B3, 520 (1985).Google Scholar
  72. 65.
    M. Thomsen and A. Madhukar, J. Cryst. Growth 80, 275 (1987).Google Scholar
  73. 66.
    T. C. Lee, M. Y. Yen, P. Chen, and A. Madhukar, J. Vac. Sci. Technol. A4 884 (1986).Google Scholar
  74. 67.
    J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press (1964).Google Scholar
  75. 68.
    T. Halicioglu, Phys. Status Solidi B 99, 347 (1980).Google Scholar
  76. 69.
    E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller,J. Cryst. Growth 70, 33 (1984).Google Scholar
  77. 70.
    W. A. Tiller,J. Cryst. Growth 70, 13 (1984).Google Scholar
  78. 71.
    T. Takai, T. Halicioglu, and W. A. Tiller, Surf. Sci. 164, 341 (1985).Google Scholar
  79. 72.
    F. Stillinger and T. Weber, Phys. Rev. B 31, 5262 (1985).Google Scholar
  80. 73.
    R. Biswas and D. R. Hamann, Phys. Rev. Lett. 55, 2001 (1985).Google Scholar
  81. 74.
    D. K. Choi, T. Takai, S. Erkoc, T. Halicioglu, and W. A. Teller, J. Cryst. Growth 85, 9 (1987).Google Scholar
  82. 75.
    H. Balamane, T. Halicioglu, and W. A. Tiller,J. Cryst. Growth 85, 16 (1987).Google Scholar
  83. 76.
    B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).Google Scholar
  84. 77.
    J. M. Chavazas, A. Bonissent, and B. Mutaftschiev, J. Cryst Growth 76, 9 (1986).Google Scholar
  85. 78.
    A. Kobayashi, S. M. Paik, K. E. Khor, and S. Das Sarma, Surf. Sci. 174, 48 (1986).Google Scholar
  86. 79.
    A. Kobayashi, S. M. Paik, and S. Das Sarma, J. Vac. Sci. Technol. B4, 884 (1986).Google Scholar
  87. 80.
    M. J. P. Musgrave and J. A. Pople, Proc. R. Soc. London. Scr. A 268, 474 (1962).Google Scholar
  88. 81.
    P. N. Keating, Phys. Rev. 145, 637 (1966).Google Scholar
  89. 82.
    R. M. Martin, Phys. Rev. B 1, 4005 (1970).Google Scholar
  90. 83.
    V. Burket and N. L. Allinger, Molecular Mechanics, ACS Monographs 177 (1982).Google Scholar
  91. 84.
    T. Fukui, J. Appl. Phys. 57, 5188 (1985).Google Scholar
  92. 85.
    M. Ichimura and A. Sasaki, Jap. J. Appl. Phys. 25, 976 (1986).Google Scholar
  93. 86.
    F. C. Frank and J. H. Van der Merwe, Proc. R. Soc. London, Scr. A 198, 205, 216 (1949).Google Scholar
  94. 87.
    J. H. Van der Merwe, J. Appl. Phys. 34, 117 (1963).Google Scholar
  95. 88.
    C. A. B. Ball, Phys. Status Solidi 42, 357 (1970).Google Scholar
  96. 89.
    J. H. Van der Merwe, Surf. Sci. 31, 198 (1972).Google Scholar
  97. 90.
    J. W. Matthews, Epitaxial Growth, Academic Press, New York (1975).Google Scholar
  98. 91.
    K. Nishitani, K. Okhata, and T. Murotani,J. Electron. Mater. 12, 619 (1983).Google Scholar
  99. 92.
    P. P. Chow, D. K. Greenlaw, and D. Johnson, J. Vac. Sci. Technol. A1, 562 (1983).Google Scholar
  100. 93.
    H. A. Mar, N. Salansky, and K. T. Chee, Appl. Phys. Lett. 44, 898 (1984).Google Scholar
  101. 94.
    C. J. Summers, E. L. Mecks, and N. W. Cox, J. Vac. Sci. Technol. B2, 224 (1984).Google Scholar
  102. 95.
    G. Cohen Solal, F. Bailly, and M. Barbe, Appl. Phys. Lett. 49, 1519 (1986).Google Scholar
  103. 96.
    N. Otsuka, L. A. Kolodziejski, R. L. Gunshor, S. Datta, R. N. Bicknell, and J. F. Schetzina, Appl. Phys. Lett. 46, 860 (1985).Google Scholar
  104. 97.
    D. Estève, M. Djafari Rouhani, V. V. Pham, A. Amrani, and J. J. Simonne, Proc. SPIE 88 Conf. Advances in Semiconductor Physics and Device Applications, New Port Beach, Calif., 13–18 March (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • M. Djafari Rouhani
    • 1
  • D. Estève
    • 2
  1. 1.Laboratoire Physique des SolidesUniversité P. SabatierToulouse CedexFrance
  2. 2.LAAS-CNRSToulouse CedexFrance

Personalised recommendations