Rate Equations, Rate Constants, and Surface Diffusion

  • G. Wahnström
Part of the Physics of Solids and Liquids book series (PSLI)


One of the themes in the present volume is the way the basic interaction potential for adparticles physisorbed and chemisorbed on solid surfaces relates to the dynamics of adsorbed particles. In this chapter we will try to make this connection in some simple cases.


Friction Coefficient Surface Diffusion Transition State Theory Escape Rate Reactive Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. P. Flynn, Point Defects and Diffusion, Clarendon Press, Oxford (1972).Google Scholar
  2. 2.
    Y. Fukai and H. Sugimoto, Diffusion of hydrogen in metals, Adv. Phys. 34, 263–326 (1985).CrossRefGoogle Scholar
  3. 3.
    E. W. Müller and T. T. Tsong, Field Ion Microscopy, Elsevier, New York (1968).Google Scholar
  4. 4.
    G. Ehrlich, Wandering surface atoms and the field ion microscope, Phys. Today 6, 44–53 (1981).CrossRefGoogle Scholar
  5. 5.
    G. Ehrlich and K. Stolt, Surface diffusion, Ann. Rev. Phys. Chem. 31, 603–637 (1980).CrossRefGoogle Scholar
  6. 6.
    V. T. Bien (ed.), Surface Mobilities on Solid Materials, Plenum Press, New York (1983).Google Scholar
  7. 7.
    G. Ehrlich, Quantitative examination of individual atomic events on solids, J. Vac. Sci. Technol. 17, 9–14 (1980).CrossRefGoogle Scholar
  8. 8.
    G. Mazenko, J. R. Banavar, and R. Gomer, Diffusion coefficients and the time autocorrelation function of density fluctuations, Surf. Sci. 107, 459–468 (1981).CrossRefGoogle Scholar
  9. 9.
    K. W. Kehr, R. Kutner, and K. Binder, Diffusion in concentrated lattice gases. Self-diffusion of noninteracting particles in three-dimensional lattices, Phys. Rev. B 23, 4931–4945 (1981).Google Scholar
  10. 10.
    K. Sköld, in: Hydrogen in Metals I, Basic Properties (G. Alefeld and J. Völkl, eds.), pp. 267–287, Springer-Verlag, Berlin (1978).CrossRefGoogle Scholar
  11. 11.
    F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, Tokyo (1965).Google Scholar
  12. 12.
    S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15, 1–89 (1943).CrossRefGoogle Scholar
  13. 13.
    O. Klein, Zur statistischen theorie der Suspensionen und lösungen, Ark. Mat. Astron. Fys. 16 (5), 1–51 (1922).Google Scholar
  14. 14.
    H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284–304 (1940).CrossRefGoogle Scholar
  15. 15.
    H. Risken and H. D. Vollmer, Low friction nonlinear mobility for the diffusive motion in periodic potentials, Phys. Lett. 69A, 387–389 (1979).Google Scholar
  16. 16.
    R. L. Stratonovich, Topics in the Theory of Random Noise, Gordon & Breach, New York (1967).Google Scholar
  17. 17.
    V. Ambegaokar and B. I. Halperin, Voltage due to thermal noise in the dc josephson effect, Phys. Rev. Lett. 22, 1364–1366 (1969).CrossRefGoogle Scholar
  18. 18.
    D. L. Weaver, Effective diffusion coefficient of a brownian particle in a periodic potential, Physica 98A, 359–362 (1979).Google Scholar
  19. 19.
    J. R. Banavar, M. H. Cohen, and R. Gomer, A calculation of surface diffusion coefficients of adsorbates on the (110) plane of tungsten, Surf. Sci. 107, 113–126 (1981).CrossRefGoogle Scholar
  20. 20.
    G. Wahnström, Surface self-diffusion of hydrogen on a model potential: Quantum aspects and correlated jumps, J. Chem. Phys. 89, 6996–7009 (1988).CrossRefGoogle Scholar
  21. 21.
    G. Wahnström, Diffusion of an adsorbed particle: Theory and numerical results, Surf. Sci. 159, 311–332 (1985).CrossRefGoogle Scholar
  22. 22.
    P. G. Wolynes, Quantum theory of activated events in condensed phases, Phys. Rev. Lett. 47, 968–971 (1981).CrossRefGoogle Scholar
  23. 23.
    P. Hanggi, Escape from metastable state, J. Stat. Phys. 42, 105–148 (1986).CrossRefGoogle Scholar
  24. 24.
    A. J. Leggett, S. Chakravarty, A. T. Dorsey, Matthew P. A. Fisher, Anupam Garg, and W. Zwerger, Dynamics of dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987).CrossRefGoogle Scholar
  25. 25.
    A. Messiah, Quantum Mechanics, Vol. 2, North-Holland, Amsterdam (1961).Google Scholar
  26. 26.
    J. C. Tully, Theories of the dynamics of inelastic and reactive processes at surfaces, Ann. Rev. Phys. Chem. 31, 319–343 (1980).CrossRefGoogle Scholar
  27. 27.
    P. Pechukas, in: Dynamics of Molecular Collisions, Part B (W. H. Miller, ed.), pp. 269–322, Plenum Press, New York (1976).CrossRefGoogle Scholar
  28. 28.
    D. G. Truhlar, W. L. Hase, and J. T. Hynes, Current status of transition-state theory, J. Phys. Chem. 87. 2664–2682 (1983).CrossRefGoogle Scholar
  29. 29.
    H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3, 107–115 (1935).CrossRefGoogle Scholar
  30. 30.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  31. 31.
    C.A. Wert and C. Zener, Interstitial atomic diffusion coefficients, Phys. Rev. 76, 1169–1175 (1949).CrossRefGoogle Scholar
  32. 32.
    G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes,J. Phys. Chem. Solids 3, 121–127 (1957).CrossRefGoogle Scholar
  33. 33.
    A. F. Voter, A Monte Carlo method for determining free-energy differences and transition state theory rate constants, J. Chem. Phys. 82, 1890–1899 (1985).CrossRefGoogle Scholar
  34. 34.
    J. G. Lauderdale and D. G. Truhlar, Diffusion of hydrogen, deuterium, and tritium on the (100) plane of copper: Reaction-path formulation, variational transitions state theory, and tunneling calculations, Surf. Sci. 164, 558–588 (1985).CrossRefGoogle Scholar
  35. 35.
    J. G. Lauderdale and D. G. Truhlar, Embedded-cluster model for the effects of phonons on the hydrogen surface diffusion on copper, J. Chem. Phys. 84, 1843–1849 (1986).CrossRefGoogle Scholar
  36. 36.
    S. M. Valone, A. F. Voter, and J. D. Doll, The isotope and temperature dependence on self-diffusion for hydrogen, deuterium, and tritium on Cu(100) in the 100–1000 K range, Surf. Sci. 155, 687–699 (1985).CrossRefGoogle Scholar
  37. 37.
    S. M. Valone, A. F. Voter, and J. D. Doll, The influence of substrate motion on the self-diffusion of hydrogen and its isotopes on the copper (100) surface, J. Chem. Phys. 85, 7480–7486 (1986).CrossRefGoogle Scholar
  38. 38.
    R. Jaquet and W. H. Miller, Quantum mechanical rate constants via parth integrals: Diffusion of hydrogen atoms on a W(100) surface,J. Phys. Chem. 89, 2139–2144 (1985).CrossRefGoogle Scholar
  39. 39.
    D. L. Hill and J. A. Wheeler, Nuclear constitution and the interpretation of fisson phenomena, Phys. Rev. 89, 1102–1121 (1953).CrossRefGoogle Scholar
  40. 40.
    J. C. Keck, Variational theory of reaction rates, Adv. Chem. Phys. 13, 85–121 (1967).CrossRefGoogle Scholar
  41. 41.
    C. H. Bennett, in: Diffusion in Solids: Recent Developments (A. S. Nowick and J. J. Burton, eds.), pp. 73–113, Academic Press, New York (1975).Google Scholar
  42. 42.
    D. Chandler, Roles of classical dynamics and quantum dynamics on activated processes occurring in liquids, J. Stat. Phys. 42, 49–67 (1986).CrossRefGoogle Scholar
  43. 43.
    J. D. Doll and A. F. Voter, Recent developments in the theory of surface diffusion, Ann. Rev. Phys. Chem. 38, 413–431 (1987).CrossRefGoogle Scholar
  44. 44.
    T. Yamamoto, Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase, J. Chem. Phys. 33, 281–289 (1960).CrossRefGoogle Scholar
  45. 45.
    W. H. Miller, S. D. Schwartz, and J. W. Tromp, Quantum mechanical rate constants for bimolecular reactions, J. Chem. Phys. 79, 4889–4898 (1983).CrossRefGoogle Scholar
  46. 46.
    C. H. Bennett, in: Algorithms for Chemical Computations (R. E. Christoffersen, ed.), pp. 63–97, American Chemical Society, Washington D.C. (1977).CrossRefGoogle Scholar
  47. 47.
    W. H. Miller, Importance of nonseparability in quantum mechanical transition-state theory, Acc. Chem. Res. 9, 306–312 (1976).CrossRefGoogle Scholar
  48. 48.
    D. Chandler, Statistical mechanics of isomerization dynamics in liquids and the transition state approximation, J. Chem. Phys. 68, 2959–2970 (1978).CrossRefGoogle Scholar
  49. 49.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, W. A. Benjamin, Reading, Massachusetts (1975).Google Scholar
  50. 50.
    S. W. Lovesey, Condensed Matter Physics: Dynamic Correlations, The Benjamin/Cummings Publ., Menlo Park, California (1986).Google Scholar
  51. 51.
    G. Wahnström and H. Metiu, Numerical study of the correlation function expressions for the thermal rate coefficients in quantum systems,J. Phys. Chem. 92, 3240–3252 (1988).CrossRefGoogle Scholar
  52. 52.
    J. Costley and P. Pechukas, Short-time behavior of quantum correlation functions in rate theory, Chem. Phys. Lett. 83, 139–144 (1981).CrossRefGoogle Scholar
  53. 53.
    R. W. Zwanzig, Time-correlation functions and transport coefficients in statistical mechanics, Annu. Rev. Phys. Chem. 16, 67–102 (1965).CrossRefGoogle Scholar
  54. 54.
    A. F. Voter and J. D. Doll, Dynamical corrections to transition state theory for multistate systems: Surface self-diffusion in the rare-event regime, J. Chem. Phys. 82, 80–92 (1985).CrossRefGoogle Scholar
  55. 55.
    A. F. Voter, Classically exact overlayer dynamics: Diffusion of rhodium clusters on Rh(100), Phys. Rev. B 10, 6819–6829 (1986).CrossRefGoogle Scholar
  56. 56.
    B. J. Berne, in: Statistical Mechanics, Part B: Time-Dependent Processes (B. J. Berne, ed.), pp. 233–257, Plenum Press, New York (1977).Google Scholar
  57. 57.
    R. Zwanzig, in: Lectures in Theoretical Physics, Vol. 3 (W. E. Brittin, B. W. Downs, and J. Downs, eds.), Interscience, New York (1961).Google Scholar
  58. 58.
    H. Mori, Transport, collective motion and Brownian motion, Prog. Theor. Phys. 33, 423–455 (1965).CrossRefGoogle Scholar
  59. 59.
    W. L. Schaich, Brownian motion model of surface chemical reactions. Derivation in the large mass limit, J. Chem. Phys. 60, 1087–1093 (1974).CrossRefGoogle Scholar
  60. 60.
    E. G. d’Agliano, P. Kumar, W. Schaich, and H. Suhl, Brownian motion model of the interactions between chemical species and metallic electrons: Bootstrap derivation and parameter evaluation, Phys. Rev. B 11, 2122–2143 (1975).CrossRefGoogle Scholar
  61. 61.
    A. Blandin, A. Nourtier, and D. W. Hone, Localized time-dependent perturbations in metals: Formalism and simple examples,J. Phys. (Paris) 37, 369–378 (1976).CrossRefGoogle Scholar
  62. 62.
    P. Hohenberg and W. Kofth, Inhomogeneous electron gas, Phys. Rev. 136, B864–B871 (1964).CrossRefGoogle Scholar
  63. 63.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140, A1133–A1138 (1965).CrossRefGoogle Scholar
  64. 64.
    B. Hellsing and M. Persson, Electronic damping of atomic and molecular vibrations at metal surfaces, Phys. Scr. 29, 360–371 (1984).CrossRefGoogle Scholar
  65. 65.
    A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York (1971).Google Scholar
  66. 66.
    M. Persson and B. Hellsing, Electronic damping of adsorbate vibrations on metal surfaces, Phys. Rev. Lett. 49, 662–665 (1982).CrossRefGoogle Scholar
  67. 67.
    V. P. Zhdanov, Diffusion of hydrogen in bulk or on surface of metal, Surf. Sci. 161, L614–L620 (1985).CrossRefGoogle Scholar
  68. 68.
    G. Wahnström, Role of phonons and electron-hole pairs in hydrogen diffusion on a corrugated metal surface, Chem. Phys. Lett. 163, 401–406 (1989).CrossRefGoogle Scholar
  69. 69.
    G. Wahnström, Diffusion of an adsorbed particle: Dependence on the mass, Surf. Sci. 164, 449–463 (1985).CrossRefGoogle Scholar
  70. 70.
    W. G. Kleppmann and R. Zeyher, Diffusion in a deformable lattice: Theory and numerical results, Phys. Rev. B 22, 6044–6064 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Wahnström
    • 1
  1. 1.Institute of Theoretical PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations