Photoemission from Adsorbates

  • A. M. Bradshaw
Part of the Physics of Solids and Liquids book series (PSLI)


Despite the plethora of techniques available to the surface scientist photoemission, or photoelectron spectroscopy, remains the most direct and effective probe of the bound electronic energy levels associated with adorbed species. In this experiment monochromatic radiation in the VUV or soft X-region causes photoexcited electrons (or photoelectrons) to be emitted into the vacuum continuum. Their kinetic energy E f is determined with an electrostatic energy analyzer; their emission direction and spin state may also be important parameters. The energy balance is given by
$$ {E^{N}} + hv = {E^{{N - 1}}}({n_{k}} = 0) + {E_{f}} $$
where E N is the total (N-particle) final state energy of the adsorbate-substrate system and E N-1 (n k = 0) is the energy of the (N - 1)-particle system with a hole in the kth level. The electron binding energy (also referred to as the ionization energy or ionization potential) is defined by
$$ {E_{B}} = {E^{{N - 1}}}({n_{k}} = 0) - {E^{N}} = hv - {E_{f}} $$


Synchrotron Radiation Photoelectron Spectrum Storage Ring Normal Emission Photoemission Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Turner’s experiments are summarized in: D. W. Turner, A. D. Baker, C. Baker, and C. R. Brundle, Molecular Photoelectron Spectroscopy, Wiley, London (1970).Google Scholar
  2. 2.
    F. I. Viselov, B. L. Kurbatov, and A. N. Terenin, Dokl. Akad. Nauk SSSR 138, 1329 (1961).Google Scholar
  3. 3.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Dordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergark, S.-E. Karlsson, I. Lendgren, and B. Lindberg, ESCA-Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Almqvist and Wiksells, Uppsala (1967).Google Scholar
  4. 4.
    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.-F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L.-O. Werne, R. Manne, and Y. Baur, ESCA Applied to Free Molecules, North-Holland, Amsterdam (1969).Google Scholar
  5. 5.
    U. Gelius, S. Svensson, H. Siegbahn, E. Basilier, Å. Faxälv, and K. Siegbahn, Chem. Phys. Lett. 28, 1(1974).Google Scholar
  6. 6.
    L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205 (1977).Google Scholar
  7. 7.
    J. H. D. Eland, Photoelectron Spectroscopy (2nd ed.), Butterworths, London (1984).Google Scholar
  8. 8.
    H. Siegbahn and L. Karlsson, Photoelectron Spectroscopy (Handbuch der Physik Vol. XXXI), Springer-Verlag, Berlin (1982).Google Scholar
  9. 9.
    N. D. Lang, in: Theory of the Inhomogeneous Electron Gas (S. Lundqvist and N. H. March, eds.), Plenum Press, New York (1983).Google Scholar
  10. 10.
    A. M. Bradshaw, W. Domcke, and L. S. Cederbaum, Phys. Rev. B 16, 1480 (1977).Google Scholar
  11. 11.
    J. C. Fuggle, E. Umbach, D. Menzel, K. Wandelt, and C. R. Brundle, Solid State Commun. 27, 65 (1978).Google Scholar
  12. 12.
    C. L. Allyn, T. Gustafsson, and E. W. Plummer, Solid State Commun. 24, 53 (1977).Google Scholar
  13. 13.
    M. Šunjić and A. Lucas, Chem. Phys. Lett. 42, 462 (1976)Google Scholar
  14. 13a.
    J. W. Gadzuk, Phys. Rev. B 14, 5458 (1976).Google Scholar
  15. 14.
    M. P. Seah and W. Dench, J. Surf. Interface Anal. 1, 1 (1979).Google Scholar
  16. 15.
    J. A. R. Samson, Techniques of Vacuum UV Spectroscopy, Wiley, New York (1967).Google Scholar
  17. 16.
    H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic Press, New York (1982).Google Scholar
  18. 17.
    P. A. Redhead, J. P. Hobson, and E. V. Komelsen, The Physical Basis of Ultrahigh Vacuum, Chapman and Hall, London (1968).Google Scholar
  19. 18.
    G. Ertl and J. Küppers, Low Energy Electrons and Surface Chemistry (2nd ed.), Verlag Chemie, Weilheim (1985).Google Scholar
  20. 19.
    D. P. Woodruff and T. A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, Cambridge (1986).Google Scholar
  21. 20.
    G. Margaritondo, Introduction to Synchrotron Radiation, Oxford University Press, New York (1988).Google Scholar
  22. 21.
    D. E. Eastman and J. K. Cashion, Phys. Rev. Lett. 27, 1520 (1971).Google Scholar
  23. 22.
    R. J. Smith, J. Anderson, and G. J. Lapeyre, Phys. Rev. Lett. 37, 1081 (1976).Google Scholar
  24. 23.
    C. L. Allyn, T. Gustafsson, and E. W. Plummer, Chem. Phys. Lett. 47, 127 (1977).Google Scholar
  25. 24.
    D. R. Penn, Phys. Rev. Lett. 28, 1041 (1972).Google Scholar
  26. 25.
    J. W. Davenport, Phys. Rev. Lett. 36, 945 (1976).Google Scholar
  27. 26.
    A. M. Bradshaw, Z. Phys. Chem. NF 112, 33 (1978)Google Scholar
  28. 26a.
    N. V. Richardson and A. M. Bradshaw, in: Electron Spectroscopy: Theory, Technique and Applications (A. Baker and C. R. Brundle, eds.), Vol. 4, Academic Press, London (1980).Google Scholar
  29. 27.
    J. Hermanson, Solid State Commun. 22, 9 (1977).Google Scholar
  30. 28.
    K. Jacobi, M. Scheffler, K. Kambe, and F. Forstmann, Solid State Commun. 22, 17 (1977).Google Scholar
  31. 29.
    M. Surman, K. C. Prince, L. Sorba, and A. M. Bradshaw, Surf. Sci. 206, L864 (1988).Google Scholar
  32. 30.
    S. Andersson and J. B. Pendry, Phys. Rev. Lett. 43, 363 (1979).Google Scholar
  33. 31.
    C. F. McConville, D. P. Woodruff, K. C. Prince, G. Paolucci, V. Cháb, M. Surman, and A. M. Bradshaw, Surf. Sci. 166, 231 (1986).Google Scholar
  34. 32.
    P. S. Bagus, C. J. Nelin, and C. W. Bauschlicher Jr., J. Vac. Sci. Technol. A2, 905 (1984).Google Scholar
  35. 33.
    L. H. Dubois, B. R. Zogarski, and H. S. Luftman, J. Chem. Phys. 87, 1267 (1987).Google Scholar
  36. 34.
    D. Heskett, I. Stratky, E. W. Plummer, and R. A. de Paola, Phys. Rev. B 32, 622 (1985).Google Scholar
  37. 35.
    D. D. Heskett and E. W. Plummer, Phys. Rev. B 33, 2322 (1986).Google Scholar
  38. 36.
    C. Somerton, C. F. McConville, D. P. Woodruff, D. E. Grider, and N. V. Richardson, Surf. Sci. 138, 31 (1984).Google Scholar
  39. 37.
    G. Paolucci, M. Surman, K. C. Prince, L. Sorba, A. M. Bradshaw, C. F. McConville, and D. P. Woodruff, Phys. Rev. B 34, 1340 (1986).Google Scholar
  40. 38.
    G. L. Nyberg and N. V. Richardson, Surf. Sci. B 5, 335 (1979).Google Scholar
  41. 39.
    F. P. Netzer and U. Mach, J. Chem. Phys. 79, 1017 (1983).Google Scholar
  42. 40.
    J. A. Horsley, J. Stöhr, A. P. Hitchcock, D. C. Newbury, A. L. Johnson, and F. Sette, J. Chem. Phys. 83, 6099 (1985).Google Scholar
  43. 41.
    F. P. Netzer, H. H. Craen, H. Kuhlenbeck, and M. Neumann, Chem. Phys. Lett. 133, 49 (1987).Google Scholar
  44. 42.
    F. P. Netzer, G. Raugelov, G. Rosina, H. B. Saalfeld, M. Neumann, and D. R. Lloyd, Phys. Rev. B 37, 10399 (1988).Google Scholar
  45. 43.
    P. Hofmann, K. Horn, and A. M. Bradshaw, Surf. Sci. 105, L260 (1981).Google Scholar
  46. 44.
    B. Boddenberg and J. Moreno,J. Phys. (Paris), Colloq. 38, C4–52 (1977).Google Scholar
  47. 45.
    W. von Niessen, L. S. Cederbaum, and W. P. Kraemer, J. Chem. Phys. 65, 1378 (1976).Google Scholar
  48. 46.
    D. H. S. Ying and R. Madix, J. Catal. 61, 48 (1980).Google Scholar
  49. 47.
    B. E. Hayden, K. C. Prince, D. P. Woodruff, and A. M. Bradshaw, Surf. Sci. 133, 589 (1983).Google Scholar
  50. 48.
    A. Puschmann, J. Haase, M. D. Crapper, C. E. Riley, and D. P. Woodruff, Phys. Rev. Lett. 54, 2250 (1985).Google Scholar
  51. 49.
    D. P. Woodruff, C. F. McConville, A. L. D. Kilcoyne, Th. Lindner, J. Somers, M. Surman, G. Paolucci, and A. M. Bradshaw, Surf. Sci. 201, 228 (1988).Google Scholar
  52. 50.
    Th. Lindner, J. Somers, A. M. Bradshaw, and G. P. Williams, Surf. Sci. 185, 75 (1987).Google Scholar
  53. 51.
    P. Hofmann and D. Menzel, Surf. Sci. 191, 353 (1987).Google Scholar
  54. 52.
    S. D. Peyerimhoff, J. Chem. Phys. 47, 349 (1967).Google Scholar
  55. 53.
    J. A. Rodriguez and C. T. Campbell, Surf. Sci. 183, 449 (1987).Google Scholar
  56. 54.
    A. M. Bradshaw and M. Scheffler, J. Vac. Sci. Technol. 16, 447 (1979).Google Scholar
  57. 55.
    P.J. Feibelman and F. J. Himpsel, Phys. Rev. B 21, 1394 (1980).Google Scholar
  58. 56.
    R. Richter and J. W. Wilkins, Surf. Sci. 128, L190 (1983).Google Scholar
  59. 57.
    C. L. Fu, A. J. Freeman, W. Wimmer, and M. Weinert, Phys. Rev. Lett. 54, 2261 (1985).Google Scholar
  60. 58.
    A. Liebsch, Phys. Rev. B 17, 1653 (1978).Google Scholar
  61. 59.
    K. Horn, M. Scheffler, and A. M. Bradshaw, Phys. Rev. Lett. 41, 822 (1978).Google Scholar
  62. 60.
    C. Mariani, K. Horn, and A. M. Bradshaw, Phys. Rev. B 25, 7798 (1982).Google Scholar
  63. 61.
    M. Jaubert, A. Glachant, M. Bienfait, and G. Boato, Phys. Rev. Lett. 46, 1979 (1981).Google Scholar
  64. 62.
    W. Berndt, Surf. Sci. 219, 161 (1989).Google Scholar
  65. 63.
    M. Scheffler, K. Horn, A. M. Bradshaw, and K. Kambe, Surf. Sci. 80, 69 (1979).Google Scholar
  66. 64.
    G. Schönhense, Appl. Phys. A41, 39 (1986).Google Scholar
  67. 65.
    T. Mandel, M. Domke, and G. Kaindl, Surf. Sci. 197, 81 (1988).Google Scholar
  68. 66.
    J. Stöhr, R. Jaeger, and S. Brennan, Surf. Sci. 117, 503 (1982).Google Scholar
  69. 67.
    E. W. Plummer, B. Tonner, N. Holzwarth, and A. Liebsch, Phys. Rev. B 21, 4306 (1980).Google Scholar
  70. 68.
    M. Bader, J. Haase, A. Puschmann, and C. Ocal, Phys. Rev. Lett. 59, 2435 (1987).Google Scholar
  71. 69.
    R. A. DiDio, D. M. Zehner, and E. W. Plummer, J. Vac. Sci. Technol. A2, 852 (1984).Google Scholar
  72. 70.
    R. Courths, B. Cord, H. Wem, H. Saalfeld, and J. Hüfner, Solid State Commun. 63, 619 (1987).Google Scholar
  73. 71.
    K. C. Prince, G. Paolucci, and A. M. Bradshaw, Surf. Sci. 175, 101 (1986).Google Scholar
  74. 72.
    W. Jacob, V. Dose, and A. Goldmann, Appl. Phys. A41, 145 (1986).Google Scholar
  75. 73.
    K. Horn, A. M. Bradshaw, and K. Jacobi, Surf. Sci. 72, 719 (1978).Google Scholar
  76. 74.
    K. Horn, A. M. Bradshaw, K. Hermann, and I. P. Batra, Solid State Commun. 31, 257 (1979).Google Scholar
  77. 75.
    H.-J. Freund and M. Neumann, Appl. Phys. A47, 3 (1988).Google Scholar
  78. 76.
    H. Kuhlenbeck, M. Neumann, and H.-J. Freund, Surf. Sci. 173, 194 (1986).Google Scholar
  79. 77.
    F. Hund, Z. Phys. 99, 119 (1936).Google Scholar
  80. 78.
    I. P. Batra, K. Hermann, A. M. Bradshaw, and K. Horn, Phys. Rev. B 34, 2199 (1986).Google Scholar
  81. 79.
    W. Riedl and D. Menzel, Surf. Sci. 163, 39 (1985).Google Scholar
  82. 80.
    D. Pescia, A. R. Law, M. T. Johnson, and H. P. Hughes, Solid State Commun. 56, 809 (1985).Google Scholar
  83. 81.
    K. C. Prince, M. Surman, Th. Lindner, and A. M. Bradshaw, Solid State Commun. 59, 71 (1986).Google Scholar
  84. 82.
    K. C. Prince,J. Electron Spectrosc. Relat. Phenom. 42, 217 (1987).Google Scholar
  85. 83.
    N. D. Lang and A. R. Williams, Phys. Rev. B 16, 2408 (1977).Google Scholar
  86. 84.
    K. Wandelt and J. E. Hulse, J. Chem. Phys. 80, 1340 (1984).Google Scholar
  87. 85.
    W. F. Egelhoff, Surf. Sci. Rep. 6, 253 (1987).Google Scholar
  88. 86.
    T. E. Madey, J. T. Yates, and N. E. Erickson, Surf. Sci. 43, 257 (1984).Google Scholar
  89. 87.
    E. Umbach, J. C. Fuggle, and D. Menzel, Surf. Sci. 10, 15 (1977).Google Scholar
  90. 88.
    E. Umbach, S. Kulkami, P. Feulner, and D. Menzel, Surf. Sci. 88, 65 (1979).Google Scholar
  91. 89.
    R. I. Masel, E. Umbach, J. C. Fuggle, and D. Menzel, Surf. Sci. 79, 26 (1979).Google Scholar
  92. 90.
    G. E. Thomas and W. H. Weinberg, Phys. Rev. Lett. 41, 1181 (1978).Google Scholar
  93. 91.
    O. Gunnarsson and K. Schönhammer, Solid State Commun. 23, 691 (1977).Google Scholar
  94. 92.
    E. Umbach, Solid State Commun. 51, 365 (1984).Google Scholar
  95. 93.
    S. Krause, C. Mariani, K. C. Prince, and K. Horn, Surf. Sci. 138, 305 (1984).Google Scholar
  96. 94.
    C. F. McConville, D. L. Seymour, D. P. Woodruff, and S. Bao, Surf. Sci. 188, 1 (1988).Google Scholar
  97. 95.
    See, e.g., I. P. Batra, and L. Kleinmann, J. Electron Spectrosc. Relat. Phenom. 33, 175 (1984).Google Scholar
  98. 96.
    C. S. Fadley, Phys. Scr. T17, 39 (1987).Google Scholar
  99. 97.
    Y. Gauthier, D. Aberdam, and R. Baudoing, Surf. Sci. 78, 339 (1978) and references therein.Google Scholar
  100. 98.
    Th. Fauster, H. Dürr, and D. Hartwig, Surf. Sci. 178, 657 (1986).Google Scholar
  101. 99.
    D. H. Rosenblatt, J. G. Tobin, M. G. Mason, R. F. Davis, S. D. Kevan, D. A. Shirley, C. H. Li, and S. Y. Tong, Phys. Rev. B 23, 3828 (1981).Google Scholar
  102. 100.
    J. J. Barton, C. C. Baker, Z. Hussain, S. W. Robey, L. E. Klebanoff, and D. A. Shirley, Phys. Rev. Lett. 51, 272 (1983).Google Scholar
  103. 101.
    D. P. Woodruff, Surf. Sci. 166, 377 (1986).Google Scholar
  104. 102.
    A. Puschmann, J. Haase, M. D. Crapper, C. E. Riley, and D. P. Woodruff, Phys. Rev. Lett. 54, 2250 (1985).Google Scholar
  105. 103.
    M. D. Crapper, C. E. Riley, and D. P. Woodruff, Surf. Sci. 184, 121 (1987).Google Scholar
  106. 104.
    G. A. Barclay and C. H. L. Kennard, J. Chem. Soc., 3289 (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • A. M. Bradshaw
    • 1
  1. 1.Fritz-Haber-Institut der Max-Planck-GesellschaftBerlin 33Federal Republic of Germany

Personalised recommendations