Scanning Tunneling Microscopy

  • R. M. Feenstra
Part of the Physics of Solids and Liquids book series (PSLI)


Since its inception in 1982, the scanning tunneling microscope (STM) has proven to be a powerful tool in the sutdy of surfaces.(1–5) Ordered arrays of atoms and disordered atomic features have been observed on many metal and semiconductor surfaces. Clean surfaces as well as isolated adsorbates and thin overlayers have been studied. The STM has been used in a variety of environments including ultrahigh vacuum (UHV), air, and various liquids, and at temperatures ranging from liquid helium to above room temperature.


Seanning Tunneling Mieroseope State Density Tunnel Current Seanning Tunneling Mieroseope Image Empty State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
  2. 2.
    G. Binnig and H. Rohrer, Helv. Phys. Acta 55, 726 (1982).Google Scholar
  3. 3.
    G. Binnig and H. Rohrer, Surf. Sci. 152/153, 17 (1985).CrossRefGoogle Scholar
  4. 4.
    G. Binnig and H. Rohrer, IBM J. Res. Dev. 30, 355 (1986).Google Scholar
  5. 5.
    P. K. Hansma and J. Tersoff, J. Appl. Phys. 61, R1 (1987).CrossRefGoogle Scholar
  6. 6.
    Y. Kuk and P. J. Silverman, Rev. Sci. Instrum. 60, 165 (1989).CrossRefGoogle Scholar
  7. 7.
    R. S. Becker, J. A. Golovchenko, D. R. Hamann, and B. S. Swartzentmber, Phys. Rev. Lett. 55, 2032 (1985).CrossRefGoogle Scholar
  8. 8.
    R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972 (1986).CrossRefGoogle Scholar
  9. 9.
    J. A. Stroscio, R. M. Feenstra, and A. P. Fein, Phys. Rev. Lett. 57, 2579 (1986).CrossRefGoogle Scholar
  10. 10.
    J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).CrossRefGoogle Scholar
  11. 11.
    J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998 (1983).CrossRefGoogle Scholar
  12. 12.
    C. B. Duke, Tunneling in Solids, p. 253, Academic Press, New York (1969).Google Scholar
  13. 13.
    A. Baratoff, Physica 127B, 143 (1984).Google Scholar
  14. 14.
    R. M. Feenstra and J. A. Stroscio, Phys. Scr. T19, 55 (1987).CrossRefGoogle Scholar
  15. 15.
    E. Stoll, Surf. Sci. 143, L411 (1984).CrossRefGoogle Scholar
  16. 16.
    Y. Kuk and P. J. Silverman, Appl. Phys. Lett. 48, 1597 (1986).CrossRefGoogle Scholar
  17. 17.
    C. F. Quate, Phys. Today 39, 26 (August, 1986).CrossRefGoogle Scholar
  18. 18.
    J. Tersoff, Phys. Rev. Lett. 57, 440 (1986).CrossRefGoogle Scholar
  19. 19.
    R. M. Feenstra, W. A. Thompson, and A. P. Fein, Phys. Rev. Lett. 56, 608 (1986).CrossRefGoogle Scholar
  20. 20.
    R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surf. Sci. 181, 295 (1987).CrossRefGoogle Scholar
  21. 21.
    N. D. Lang, Phys. Rev. B 34, 5947 (1986).CrossRefGoogle Scholar
  22. 22.
    J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 10, 5095 (1974).CrossRefGoogle Scholar
  23. 23.
    R. Del Sole and A. Selloni, Phys. Rev. B 30, 883 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. M. Feenstra
    • 1
  1. 1.IBM Research DivisionT. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations