Einstein-Podolsky-Rosen Experiments Using the Decays of ηc or J/ψ into ΛΛ̄ → π-→pπ+

  • Nils A. Törnqvist
Part of the Physics of Atoms and Molecules book series (PAMO)


An important key to the resolution of the Einstein-Podolsky-Rosen (EPR) paradox(1) lies in the finding of new ways to test the nonlocal correlations predicted by quantum mechanics. In this paper we shall discuss a novel type of experiment, involving η c and J/ψ decay, which has become experimentally feasible. Nowadays, a large number of J/ψ decays accumulate in the course of e + e - storage ring experiments. For the ΛΛ channel in particular, over 1000 decay events are seen in some current experiments, although the branching ratio(2) is only (1.58 ± 0.21) x 10~3. Similar, although experimentally less feasible, reactions are J/ψ → ΣΣ̄ → πNπN̄ and e + e - → μ + μ - → e + e - + neutrinos.


Bell Inequality Initial Polarization Spin Measurement Inscribe Circle Nonlocal Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSMATHCrossRefGoogle Scholar
  2. 2.
    M. Eaton et al., Phys. Rev. D 29, 804 (1984).ADSCrossRefGoogle Scholar
  3. 3.
    M. H. Tixier et al (the DM2 collaboration, LAL Orsay, LPC, Clermont, Padova, Frascati), EPR Experiments Using the Reaction J/ψ → ΛΛ̄ with the DM2 Collaboration, presented at: Conference on Microphysical Reality and Quantum Formalism, Urbino, Italy (1985).Google Scholar
  4. 4.
    A. Falvard, private communication.Google Scholar
  5. 5.
    The SLAC Mark III collaboration (unpublished), private communication through J. Brown, M. Eaton, and H. Willutski.Google Scholar
  6. 6.
    N. A. Törnqvist, Found. Phys. 11, 171 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    N. A. Törnqvist, Phys. Lett. A. 117, 1 (1986).Google Scholar
  8. 8.
    N. A. Törnqvist, Europhys. Lett. 1, 377 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    D. H. Perkins, Introduction to High Energy Physics, second edn., Addison-Wesley, Reading, Mass. (1982), p. 237.Google Scholar
  10. 10.
    M. Aguilar Benitez et al. (the Particle Data Group), Phys. Lett. B 170, 1 (1986).Google Scholar
  11. 11.
    P. Chauvat et al. (the R608 collaboration), Phys. Lett. B 163, 273 (1986).ADSGoogle Scholar
  12. 12.
    D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, N.J., pp. 614–622 (1951).Google Scholar
  13. 13.
    D. Bohm, Phys. Rev. 85, 169 (1952).ADSGoogle Scholar
  14. 14.
    H. Willutski, private communication.Google Scholar
  15. 15.
    S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 2848 (1981).ADSCrossRefGoogle Scholar
  16. 16.
    J. S. Bell, Physics 1, 195 (1965).Google Scholar
  17. 17.
    J. S. Bell, in: Foundations of Quantum Mechanics (Proceedings of Enrico Fermi International Summer School), Academic Press, New York (1999).Google Scholar
  18. 18.
    E. P. Wigner, Am. J. Phys. 38, 1005 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Nils A. Törnqvist
    • 1
  1. 1.Department of High Energy PhysicsUniversity of HelsinkiHelsinki 17Finland

Personalised recommendations