Advertisement

Symmetric and Asymmetric Models for Atomic Cascade Experiments

  • Miguel Ferrero
  • Trevor Marshall
  • Emilio Santos
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

It is pointed out elsewhere in this book (see, for example, the chapters of Santos and of Marshall) that the evidence from optical tests of the Bell inequalities cannot be used to support any claim(1,2) that quantum nonlocality is an experimentally established phenomenon. Such claims have been based on some confusion between the two principal types of Bell inequality: homogeneous and inhomogeneous. The first type of inequality is satisfied only in those local realist theories satisfying some kind of auxiliary hypotheses, while the second must be satisfied in all local realist theories. This was already clear in the article of Clauser and Horne,(3) but it is only relatively recently that any serious study has been made of those local realist theories which do not satisfy the auxiliary hypotheses.

Keywords

Transmission Probability Bell Inequality Photon Pair Local Realist Coincidence Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. d’Espagnat, Scientific American (November 1979).Google Scholar
  2. 2.
    A. Aspect, The Ghost in the Atom (P. C. W. Davies and T. R. Brown, eds.), p. 43, Cambridge University Press (1986).Google Scholar
  3. 3.
    J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).ADSCrossRefGoogle Scholar
  4. 4.
    J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).ADSCrossRefGoogle Scholar
  5. 5.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).ADSCrossRefGoogle Scholar
  6. 6.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    A. Aspect and P. Grangier, Lett. Nuovo Cim. 43, 345 (1985).CrossRefGoogle Scholar
  10. 10.
    D. Home and T. W. Marshall, Phys. Lett. A 113, 183 (1985).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    A. Garuccio and F. Selleri, Phys. Lett. A 103, 99 (1984).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    F. Selleri, Phys. Lett. A 108, 197 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ferrero and E. Santos, Phys. Lett. A 166, 356 (1986).ADSCrossRefGoogle Scholar
  14. 14.
    T. W. Marshall and E. Santos, Phys. Lett. A 107, 164 (1985).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    S. Pascazio, Phys. Lett. A 107, 164 (1985).MathSciNetCrossRefGoogle Scholar
  16. 16.
    S. Caser, Phys. Lett. A 102, 152 (1984).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    T. W. Marshall, Phys. Lett. A 98, 5 (1983).ADSCrossRefGoogle Scholar
  18. 18.
    T. W. Marshall, Phys. Lett. A 100, 225 (1984).ADSCrossRefGoogle Scholar
  19. 19.
    E. S. Corchero, Phys. Rev. D 36, 636 (1987).ADSCrossRefGoogle Scholar
  20. 20.
    R. A. Holt and F. M. Pipkin, preprint, Harvard University (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Miguel Ferrero
    • 1
  • Trevor Marshall
    • 2
  • Emilio Santos
    • 2
  1. 1.Department of PhysicsUniversity of OviedoOviedoSpain
  2. 2.Department of Theoretical PhysicsUniversity of CantabriaSantanderSpain

Personalised recommendations