An Extended-Probability Response to the Einstein-Podolsky-Rosen Argument

  • W. Mückenheim
Part of the Physics of Atoms and Molecules book series (PAMO)


A variety of answers to the Einstein-Podolsky-Rosen (EPR) argument have been proposed. Why not let us consider a different one—as unattractive as (but not more unattractive than) all the others—which does not obey Kolmogorov’s axiom according to which probabilities p are restricted to the range 0 ⩽ p ⩽ 1? Instead of starting with a conventional introduction, this topic appears strange enough to allow us to dispense with the usual form taken by scientific expositions and to take the liberty of beginning by eavesdropping on a fictitious conversation which could have happened but (probably) did not. Other than that this mode of occurrence is frequently involved in EPR considerations, the content of the discussion is not in any way related to the main part of this chapter.


Probability Function Wigner Function Hide Variable Spin Component Spin Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSMATHCrossRefGoogle Scholar
  2. 2.
    D. Böhm, Quantum Theory, pp. 611–622, Prentice-Hall, New York (1951).Google Scholar
  3. 3.
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  4. 4.
    J. F. Clauser, Phys. Rev. Lett. 36, 1223 (1976).ADSCrossRefGoogle Scholar
  5. 5.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    W. Mückenheim, Phys. Rep. 133, 337 (1986).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    W. Mückenheim (ed.) Erweiterte Wahrscheinlichkeiten, A collection of papers on extended probabilities, in preparation.Google Scholar
  8. 8.
    M. S. Bartlett, Proc. Cambridge Phil. Soc. 41, 71 (1945).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 9.
    P. A. M. Dirac, Rev. Mod. Phys. 17, 195 (1945).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    E. P. Wigner, private communication.Google Scholar
  11. 11.
    E. P. Wigner, in: Perspectives in Quantum Theory (W. Yourgrau and A. van der Merwe, eds.), pp. 25–36, MIT Press, Cambridge, MA (1971).Google Scholar
  12. 12.
    D. Iagolnitzer, J. Math. Phys. 10, 1241 (1969).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    V. Weisskopf and E. Wigner, Z Phys. 63, 54 (1930).ADSMATHCrossRefGoogle Scholar
  14. 14.
    F. J. Lynch, R. E. Holland, and M. Hamermesh, Phys. Rev. 120, 513 (1960).ADSCrossRefGoogle Scholar
  15. 15.
    C. S. Wu, Y. K. Lee, N. Benczer-Koller, and P. Simms, Phys. Rev. Lett. 5, 432 (1960).ADSCrossRefGoogle Scholar
  16. 16.
    M. D. Reid and D. F. Walls, Phys. Rev. Lett. 53, 955 (1984).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    E. T. Jaynes, Found. Phys. 3, 477 (1973).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    P. A. M. Dirac, Proc. Roy. Soc. London Ser. A 180, 1 (1942).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    P. A. M. Dirac, Comm. Dublin Inst. Adv. Stud. A 1, 1 (1943).Google Scholar
  20. 20.
    S. N. Gupta, Can. J. Phys. 35, 961 (1957).ADSMATHCrossRefGoogle Scholar
  21. 21.
    W. Heisenberg, Introduction to the Unified Field Theory of Elementary Particles, Interscience, London (1966).MATHGoogle Scholar
  22. 22.
    R. P. Feynman, in: Quantum Implications (B. J. Hiley and F. D. Peat, eds.), pp. 235–248, Routledge and Kegan Paul, London (1987).Google Scholar
  23. 23.
    E. Schrödinger, Naturwissenschaften 23, 844 (1935).ADSCrossRefGoogle Scholar
  24. 24.
    J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).ADSCrossRefGoogle Scholar
  25. 25.
    W. Mückenheim, Phys. Blätter 39, 331 (1983).CrossRefGoogle Scholar
  26. 26.
    W. Mückenheim, Lett. Nuovo Cim. 35, 300 (1982).CrossRefGoogle Scholar
  27. 27.
    E. P. Wigner, Am. J. Phys. 38, 1005 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    A. O. Barut and P. Meystre, Phys. Lett. A 105, 458 (1984).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    P. M. Pearle, Phys. Rev. D 2, 1418 (1970).ADSCrossRefGoogle Scholar
  30. 30.
    M. O. Scully, Phys. Rev. D 28, 2477 (1983).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    F. J. Belinfante, A Survey of Hidden-Variables Theories, p. 282, Pergamon Press, Oxford (1973).Google Scholar
  32. 32.
    P. Meystre, in: Quantum Electrodynamics and Quantum Optics (A. O. Barut, ed.), pp. 443–458, Plenum, London (1984).CrossRefGoogle Scholar
  33. 33..
    W. Mückenheim, Extended probabilities and the EPR-paradox, unpublished.Google Scholar
  34. 34.
    N. D. Mermin, Phys. Rev. D 22, 356 (1980).MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    N. D. Mermin, Generalizations of Bell’s theorem to higher spins and higher correlations, preprint to appear in the proceedings of the Symposium on Fundamental Questions in Quantum Mechanics, SUNY Albany, April 1984.Google Scholar
  36. 36.
    W. Mückenheim, Ann. Fond. Louis de Broglie 11, 173 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. Mückenheim
    • 1
  1. 1.GöttingenFederal Republic of Germany

Personalised recommendations