Bell’s Inequality and the Nonergodic Interpretation of Quantum Mechanics

  • Vincent Buonomano
Part of the Physics of Atoms and Molecules book series (PAMO)


The nonergodic interpretation has been described and discussed in various works.(1–3) Here we very briefly review it in Section 2 and make some observations. In Section 3 we clarify the various types of averages that one actually deals with in a laboratory experiment and also establish some notation. Section 4 discusses theories which involve only a flow of information from the source to the polarizers for time averages. In Section 5, theories in which there is also a flow of information from the polarizers to the source are considered for time averages. Some miscellaneous comments are made in Section 6. Appendix 1 describes an experimental test in a low-intensity interference experiment and Appendix 2 examines Nelson’s stochastic mechanics in relation to our view. Parts of this work follow Buonomano.(1,2)


Counting Rate State Preparation Ensemble Average Photon Pair Usual Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Buonomano, in: The Proceedings of the International Conference on Quantum Violations: Recent and Future Experiments and Interpretations, University of Bridgeport, USA, 1986 (W. M. Honig, D. W. Kraft, and E. Panarella, eds.), Academic Press, New York (to appear).Google Scholar
  2. 2.
    V. Buonomano, in: The Proceedings of the International Conference on Microphysical Reality and Quantum Formalism, Urbino, Italy, 1985 (G. Tarozzi and A. van der Merwe, eds.), D. Reidel, Dordrecht (to appear).Google Scholar
  3. 3.
    V. Buonomano, Nuovo Cim. 57B, 146 (1980).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    R. J. Glauber, in: Quantum Optics and Electronics (C. de Witt, A. Blandin, and C. Cohen-Tannoudji, eds.), p. 63, Gordon and Breach, New York (1965).Google Scholar
  5. 5.
    H. Margenau, Philos. Sci. 30, 1 (1963).CrossRefGoogle Scholar
  6. 6.
    V. Buonomano, Ann. Inst. Henri Poincaré, Sect. A 29, 379 (1978).MathSciNetGoogle Scholar
  7. 7.
    G. C. Scalera Lett. Nuovo Cim. 38, 16 (1983).CrossRefGoogle Scholar
  8. 8.
    G. C. Scalera Lett. Nuovo Cim. 40, 353 (1984).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Notarrigo, Nuovo Cim. 83B, 173 (1984).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    S. Pascazio, Phys. Lett. 111, (1985).Google Scholar
  11. 11.
    S. Pascazio, Time and Bell-type inequalities, preprint (1986).Google Scholar
  12. 12.
    E. Santos, Phys. Lett. 101A, 379 (1984).ADSGoogle Scholar
  13. 13.
    S. Caser, On a local model that violates Bell’s inequality, preprint (1985).Google Scholar
  14. 14.
    J. D. Franson, Phys. Rev. D 31, 2529 (1985).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    H. Haken, Synergetics, An Introduction, Springer-Verlag, Berlin (1978).MATHCrossRefGoogle Scholar
  16. 16.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    V. Buonomano, Lett. Nuovo Cim. 43, 69 (1985).CrossRefGoogle Scholar
  18. 18.
    V. Buonomano and F. Bartmann, Nuovo Cim. 95B(2), 99 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    M. Mugur-Schachter, Found. Phvs. 13, 19 (1983).MathSciNetGoogle Scholar
  20. 20.
    V. Buonomano, Neutron interferometry and the nonergodic interpretation of quantum mechanics, Phys. Lett. A (submitted). Also Proceedings of the International Workshop on Matter-Wave Interferometry, Vienna 1987 (to appear).Google Scholar
  21. 21.
    E. Nelson, Phys. Rev. 150, 1079 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    F. Prado, 1984, Partiulas que Interagim Indiretamente e a Interpretação Estocástica de Mecânica Quântica, PhD Thesis, Instituto de Matemática, Universidade Estadual de Campinas, Campinas, S.P., Brasil. Also V. Buonomano and F. Prado, Found. Phys. April, 1988.Google Scholar
  23. 23.
    G. C. Ghirardi, C. Omero, A. Rimini, and T. Weber, Riv. Nuovo Cim. 1, 1 (1978).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Vincent Buonomano
    • 1
  1. 1.Institute of MathematicsState University of CampinasCampinasBrazil

Personalised recommendations