Particle Trajectories and Quantum Correlations

  • C. Dewdney
  • P. R. Holland
Part of the Physics of Atoms and Molecules book series (PAMO)


In this paper we present a series of computer calculations carried out in order to demonstrate exactly how the causal interpretation works for two-particle quantum mechanics. In particular we show how the causal interpretation can account for the essential features of nonrelativistic, two-particle quantum mechanics in terms of well-defined, correlated, individual particle trajectories and spin vectors. We demonstrate exactly how both quantum statistics and the correlations observed in Einstein-Podolsky-Rosen (EPR) experiments can be explained in terms of nonlocal quantum potentials and nonlocal quantum torques which act on the well-defined individual particle coordinates and spin vectors.


Wave Function Wave Packet Quantum Correlation Particle Trajectory Causal Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. de Broglie, Non-Linear Wave Mechanics, Elsevier, Amsterdam (1969).Google Scholar
  2. 2.
    D. Bom, Phys. Rev. 85, 166, 180 (1952).ADSCrossRefGoogle Scholar
  3. 3.
    D. Bom, Wholeness and the Implicate Order, Routledge and Kegan Paul, London (1980).Google Scholar
  4. 4.
    C. Philipidis, C. Dewdney, and B. J. Hiley, Nuovo Cim. 52B, 15 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    C. Dewdney and B. J. Hiley, Found. Phys. 12, 27 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    C. Dewdney, Phys. Lett. 109A, 377 (1985).ADSGoogle Scholar
  7. 7.
    C. Dewdney, A. Kyprianidis, and J. P. Vigier, J. Phys. A 17, L741 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    A. Einstein, N. Rosen, and B. Podolsky, Phys. Rev. 48, 777 (1935).ADSCrossRefGoogle Scholar
  9. 9.
    N. Bohr, in: Albert Einstein: Philosopher-Scientist (P. A. Schlipp, ed.), pp. 200–241, Tudor, New York (1949).Google Scholar
  10. 10.
    D. Bom, R. Schiller, and J. Tiomno, Suppl. Nuovo Cim. 1.Google Scholar
  11. 11.
    T. Takabayasi, Progr. Theor. Phys. 14, 283 (1955).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    C. Dewdney, P. R. Holland, A. Kyprianidis, and J-P. Vigier, Trajectories and spin vector orientations in the causal interpretation of the Pauli equation, preprint, Institut Henri Poincaré (1985).Google Scholar
  13. 13.
    C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier, What happens in a spin measurement, Phys. Lett, (to appear)Google Scholar
  14. 14.
    C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier, Spin superposition in neutron interferometry, Phys. Lett. A (to appear).Google Scholar
  15. 15.
    D. Böhm, Quantum Theory, Prentice Hall, New York (1951).Google Scholar
  16. 16.
    C. Dewdney, P. R. Holland, A. Kyprianidis, and J. P. Vigier, Particle trajectories, spin vectors and Einstein-Podolsky-Rosen correlations, preprint, institut Henri Poincaré (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • C. Dewdney
    • 1
  • P. R. Holland
    • 2
  1. 1.Department of Applied Physics and Physical ElectronicsPortsmouth PolytechnicPortsmouthEngland, UK
  2. 2.Henri Poincaré InstituteParis Cedex 05France

Personalised recommendations