A New View on the Uncertainty Principle

  • J. Hilgevoord
  • J. Uffink
Part of the NATO ASI Series book series (NSSB, volume 226)


Upon close examination Heisenberg’s microscope argument is found to depend on a relation between two quite distinct concepts of uncertainty. The first is an uncertainty in what can be predicted. The second is related to the notion of resolving power and is an uncertainty in what can be inferred (retrodiction). Quantitative measures of both kinds of uncertainties are introduced and discussed. The standard deviation is criticized as a measure of uncertainty. The usual uncertainty relations connect two uncertainties of the first kind. Uncertainties of the first and second kinds are also related by an uncertainty relation; this relation provides a general basis for the microscope argument. This new kind of uncertainty relation also allows for an adequate formulation of the uncertainty principle for line width and lifetime.

Bohr’s argument with respect to the double slit problem, which is based on the uncertainty principle, is analysed and is found to depend on two uncertainties of the second kind. No corresponding uncertainty relation is known to exist; nevertheless, the validity of Bohr’s conclusion can be established in a direct way.


Wave Packet Interference Pattern Uncertainty Relation Point Spread Function Uncertainty Principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Heisenberg, W.: Z. Physik 43 (1927) 172.ADSCrossRefGoogle Scholar
  2. [2]
    Wheeler, J.A. and Zurek, W.H. eds.: Quantum Theory and Measurement, Princeton University Press 1983, p. 62.Google Scholar
  3. [3]
    Dirac, P.A.M.: Proc. Roy. Soc. 113A (1927), 621.ADSGoogle Scholar
  4. [4]
    Heisenberg, W: Die physikalischen Prinzipien der Quantentheorie] S. Hirzel Verlag, Stuttgart 1930.Google Scholar
  5. [5]
    Condon, E.U. and Morse, P.M.: Quantum Mechanics, McGraw-Hill 1929.Google Scholar
  6. [6]
    Kennard, E.H.: Z. Physik 44 (1927) 326.ADSCrossRefGoogle Scholar
  7. [7]
    Bohm, D.: Quantum Theory, Prentice Hall 1951.Google Scholar
  8. [8]
    Landau, H.J. and Pollak, H.O.: Bell. Syst. Techn. Journal 40 (1961) 65.MathSciNetMATHGoogle Scholar
  9. [9]
    Popper, K.: Logik der Forschung, Springer, Wien 1935.Google Scholar
  10. [10]
    Maassen, H. and Uffink, J.: Physical Review Letters 60 (1988) 1103.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Robertson, H.P.: Physical Review 34 (1929) 163.ADSCrossRefGoogle Scholar
  12. [12]
    Allcock, G.R.: Annals of Physics (New York) 53 (1969) 253.ADSCrossRefGoogle Scholar
  13. [13]
    Wootters, W.K.: Physical Review D23 (1981) 357.MathSciNetADSGoogle Scholar
  14. [14]
    Hilgevoord, J. and Uffink, J.: in: Microphysical Reality and Quantum Formalism, eds. A. van der Merwe et al. (Kluwer 1988) p. 91.CrossRefGoogle Scholar
  15. [15]
    Uffink, J. and Hilgevoord, J.: Foundations of Physics 15 (1985) 925.MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    Greenberger, D.M.: Reviews of Modern Physics 55 (1983) 875.ADSCrossRefGoogle Scholar
  17. [17]
    Uffink, J.: Physics Letters 108A (1985) 59.ADSGoogle Scholar
  18. [18]
    Uffink, J. and Hilgevoord, J.: Physica B151 (1988) 309.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Hilgevoord
    • 1
  • J. Uffink
    • 1
  1. 1.Department of History and Foundations of Mathematics and ScienceUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations