Induced Nonlinear Time Evolution of Open Quantum Objects

  • Hans Primas
Part of the NATO ASI Series book series (NSSB, volume 226)


In the first part [42] I have emphasized the fact that there is a logically consistent formulation of quantum mechanics of individual systems which is compatible with all empirical data. A necessary and sufficient condition for the feasibility of such an individual interpretation is that the referents of the theory are objects. We recall that we distinguish between the concepts «system» and «object». By a system we mean nothing but the referent of a theoretical discussion (specified, for example, by a Hamiltonian), without any ontological commitment. An object is defined to be an open quantum system which is interacting with its environment but which is not Einstein-Podolsky-Rosen-correlated with the environment. Quantum systems which are not objects are entangled with their environments, they have no individuality and allow only an incomplete description in terms of statistical states. Since in quantum theories the set of all statistical states is not a simplex, statistical states have no unique decomposition into extremal states. This fact leads to grave problems for a purely statistical interpretation of quantum mechanics.


Coherent State Pure State Schrodinger Equation Object System Quantum Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1a]
    L. Arnold: Stochastische Differentialgleichungen. Theorie und Anwendung. München. Oldenbourg. 1973.MATHGoogle Scholar
  2. [1b]
    L. Arnold: English translation: Stochastic Differential Equations: Theory and Application. New York. Wiley. 1974.Google Scholar
  3. [2]
    A. O. Barut and J. P. Dowling: Quantum electrodynamics based on self-energy, without second quantization: The Lamb shift and long-range Casimir-Polder van der Waals forces near boundaries. Phys. Rev. A 36, 2550–2556 (1987).ADSCrossRefGoogle Scholar
  4. [3]
    A. O. Barut and J. F. Van Huele: Quantum electrodynamics based on self energy: Lamb shift and spontaneous emission without field quantization. Phys. Rev. A 32, 3187–3195 (1985).ADSCrossRefGoogle Scholar
  5. [4]
    D. Bhaumik, B. Dutta-Roy and G. Ghosh: Classical limit of the hydrogen atom. J. Phys. A: Math. Gen. 19, 1355–1364 (1986).MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    M. Boiteux: The three-dimensional hydrogen atom as a restricted four-dimensional harmonic oscillator. Physica 65, 381–395 (1973).ADSCrossRefGoogle Scholar
  7. [6]
    T. Carleman: Application de la théorie des équations intégrales linéaires aux systèmes d’équations différentielles non linéaires. Acta Math. 59, 63–87 (1932).MathSciNetCrossRefGoogle Scholar
  8. [7]
    L. Diósi: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40,1165–1174 (1989).ADSCrossRefGoogle Scholar
  9. [8]
    J. Frenkel: Wave Mechanics. Advanced General Theory. Oxford. Clarendon. 1934.MATHGoogle Scholar
  10. [9]
    P. Funck: Die Landau-Lifshitz-Gleichung als nichtlineare Schrödingergleichung. Diplomarbeit, Laboratorium für Physikalische Chemie der ETH Zürich. 1989.Google Scholar
  11. [10]
    C. C. Gerry: On coherent states for the hydrogen atom. J. Phys. A: Math. Gen. 17, L737–L740 (1984).MathSciNetADSCrossRefGoogle Scholar
  12. [11]
    C. C. Gerry: Coherent states and the Kepler-Coulomb problem. Phys. Rev. A 33, 6–11 (1986).MathSciNetADSCrossRefGoogle Scholar
  13. [12]
    N. Gisin: Brownian motion of a quantum spin with friction. Progr. Theor. Phys. 66, 2274–2275 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  14. [13]
    N. Gisin: A simple nonlinear dissipative quantum evolution. J. Phys. A: Math. Gen. 14, 2259–2267 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  15. [14]
    N. Gisin: Spin relaxation and dissipative Schrödinger like evolution equations. Helv. Phys. Acta 54, 457–470 (1981).Google Scholar
  16. [15]
    N. Gisin: A model of irreversible deterministic quantum dynamics. In: Quantum Probability and Applications to the Quantum Theory of Irreversible Processes. Lecture Notes in Mathematics, vol. 1055. Berlin. Springer. 1984. Pp. 126–133.CrossRefGoogle Scholar
  17. [16]
    W. Guz: On quantum dynamical semigroups. Reports on Mathematical Physics 6, 455–464 (1974).MathSciNetADSMATHCrossRefGoogle Scholar
  18. [17]
    M. Kibler and T. Négadi: On the connection between the hydrogen atom and the harmonic oscillator. Lett. Nuovo Cimento 37, 225–228 (1983).MathSciNetCrossRefGoogle Scholar
  19. [18]
    M. Kibler and T. Négadi: On the connection between the hydrogen atom and the harmonic oscillator: the continuum case. J. Phys. A: Math. Gen. 16, 4265–4268 (1983).ADSCrossRefGoogle Scholar
  20. [19]
    J. R. Klauder: The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers. Annals of Physics 11, 123–168 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  21. [20]
    J. R. Klauder: Restricted variations of the quantum mechanical action functional and their relation to classical dynamics. Helv. Phys. Acta 35, 333–335 (1962).MATHGoogle Scholar
  22. [21]
    J. R. Klauder: Continuous-representation theory. I. Postulates of continuous-representation theory. J. Math. Phys. 4, 1055–1058 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  23. [22]
    J. R. Klauder: Continuous-representation theory. II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 4, 1058–1073 (1963).MathSciNetADSCrossRefGoogle Scholar
  24. [23]
    J. R. Klauder: Weak correspondence principle. J. Math. Phys. 8, 2392–2399 (1967).ADSCrossRefGoogle Scholar
  25. [24]
    J. R. Klauder: The fusion of classical and quantum theory. Preprint of a Lecture presented at the “Conference on Quantum Theory and the Structures of Time and Space”, Tutzing, West Germany, July, 1980. (1980).Google Scholar
  26. [25]
    J. R. Klauder: Coherent-state path integrals for unitary group representations. In: Proceedings of 14th ICGTMP. Ed. by Y. M. Cho. Singapore. World Scientific. 1986. Pp. 15–23.Google Scholar
  27. [26]
    J. R. Klauder and B.-S. Skagerstam: Coherent States. Applications in Physics and Mathematical Physics. Singapore. World Scientific. 1985.MATHGoogle Scholar
  28. [27]
    J. R. Klauder and E. C. G. Sudarshan: Fundamentals of Quantum Optics. New York. Benjamin. 1968.Google Scholar
  29. [28]
    B. O. Koopman: Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. U.S. 17, 315–318 (1931).ADSCrossRefGoogle Scholar
  30. [29]
    P. Kramer and M. Saraceno: Geometry of the Time-Dependent Variational Principle in Quantum Mechanics. Berlin. Springer. 1981.MATHCrossRefGoogle Scholar
  31. [30]
    L. D. Landau and E. Lifshitz: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowjet. 8, 153 (1935).MATHGoogle Scholar
  32. [31]
    E. L. Lukacs: Characteristic Functions. London. Griffin. 1970.MATHGoogle Scholar
  33. [32]
    G. W. Mackey: The Mathematical Foundations of Quantum Mechanics. New York. Benjamin. 1963.MATHGoogle Scholar
  34. [33]
    L. Mandel and E. Wolf: Selected Papers on Coherence and Fluctuations of Light, Vol. 1, 1850–1960, Vol. 2, 1961–1966. New York. Dover. 1970.Google Scholar
  35. [34]
    P. M. Morse and H. Feshbach: Methods of Theoretical Physics. New York. McGraw-Hill. 1953.MATHGoogle Scholar
  36. [35]
    J. v. Neumann: Mathematische Grundlagen der Quantenmechanik. Berlin. Springer. 1932.MATHGoogle Scholar
  37. [36]
    L. Onsager: Electric moments of molecules in liquids. J. Amer. Chem. Soc. 58, 1486–1493 (1936).CrossRefGoogle Scholar
  38. [37]
    W. Pauli: Die allgemeinen Prinzipien der Wellenmechanik. In: Handbuch der Physik. Ed. by H. Geiger and K. Scheel. Second ed.. Berlin. Springer. 1933.Google Scholar
  39. [38]
    A. Perelomov: Generalized Coherent States and Their Applications. Berlin. Springer. 1986.MATHGoogle Scholar
  40. [39]
    A. M. Perelomov: Coherent states for arbitrary Lie groups. Commun. Math. Phys. 26, 222–236 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  41. [40]
    A. Peres: Nonlinear variants of Schrödinger’s equation violate the second law of thermodynamics (with a reply by S. Weinberg). Phys. Rev. Lett. 63, 1114–1115 (1989).ADSCrossRefGoogle Scholar
  42. [41a]
    M. Planck: Vorlesungen über die Theorie der Wärmestrahlung. Leipzig. Barth. 1906.MATHGoogle Scholar
  43. [41b]
    M. Planck:English translation: Theory of Heat Radiation. New York. Dover. 1959.MATHGoogle Scholar
  44. [42]
    H. Primas: Mathematical and philosophical questions in the theory of open and macroscopic quantum systems. In: Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquiries into the Foundations of Quantum Mechanics. Ed. by A. I. Miller. New York. Plenum. 1990.Google Scholar
  45. [43]
    K. Przibram: Briefe zur Wellenmechanik. Schrödinger, Planck, Einstein, Lorentz. Wien. Springer. 1963.Google Scholar
  46. [44]
    G. A. Raggio: States and Composite Systems in W*-algebraic Quantum Mechanics. Thesis ETH Zürich, No. 6824, ADAG Administration & Druck AG, Zürich. 1981.Google Scholar
  47. [45]
    G. A. Raggio and H. Primas: Remarks on “On completely positive maps in generalized quantum dynamics”. Foundations of Physics 12, 433–435 (1982).MathSciNetADSCrossRefGoogle Scholar
  48. [46]
    G. Rosen: Linear correspondents of nonlinear equations. Lett. Nuovo Cimento 20, 617–618 (1977).MathSciNetCrossRefGoogle Scholar
  49. [47]
    D. J. Rowe: Constrained quantum mechanics and coordinate independent theory of the collective path. Nucl. Phys. A391, 307–326 (1982).MathSciNetADSCrossRefGoogle Scholar
  50. [48]
    D. J. Rowe, A. Ryman and G. Rosensteel: Many-body quantum mechanics as a symplectic dynamical system. Phys. Rev. A22, 2362–2373 (1980).MathSciNetADSCrossRefGoogle Scholar
  51. [49]
    D. J. Rowe, M. Vassanji and G. Rosensteel: Density dynamics: A generalization of Hartree-Fock theory. Phys. Rev. A28, 1951–1956 (1983).MathSciNetADSCrossRefGoogle Scholar
  52. [50]
    S. Sakai: C*-Algebras and W*-Algebras. Berlin. Springer. 1971.Google Scholar
  53. [51]
    E. Schrödinger: Der stetige Übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14, 644–666 (1926).CrossRefGoogle Scholar
  54. [52]
    H. P. Stapp: Exact solution of the infrared problem. Phys. Rev. D28, 1386–1418 (1983).MathSciNetADSCrossRefGoogle Scholar
  55. [53]
    H. P. Stapp: On the unification of quantum theory and classical physics. In: Symposium on the Foundations of Modern Physics. Ed. by P. Lathi and P. Mittelstaedt. Singapore. World Scientific. 1985.Google Scholar
  56. [54]
    M. Takesaki: Theory of Operator Algebras I. New York. Springer. 1979.MATHCrossRefGoogle Scholar
  57. [55]
    W. Ulmer and H. Hartmann: On the application of a Gauss transformation in nonlinear quantum mechanics. Nuovo Cimento 47A, 359–376 (1978).MathSciNetADSGoogle Scholar
  58. [56]
    J. Waniewski: Mobility and measurements in nonlinear wave mechanics. J. Math. Phys. 27, 1796–1799 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  59. [57]
    E. Wong and M. Zakai: On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36, 1560–1564 (1965).MathSciNetMATHCrossRefGoogle Scholar
  60. [58]
    E. Wong and M. Zakai: On the relation between ordinary and stochastic differential equations. Internat. J. Engrg. Sci. 3, 213–229 (1965).MathSciNetMATHCrossRefGoogle Scholar
  61. [59]
    S. Yomosa: Nonlinear Schrödinger equation on the molecular complex in solution. J. Phys. Soc. Japan 35, 1738–1746 (1973).ADSCrossRefGoogle Scholar
  62. [60]
    H. D. Zeh: On the interpretation of measurement in quantum theory. Foundations of Physics 1, 69–76 (1970).ADSCrossRefGoogle Scholar
  63. [61]
    H. D. Zeh: On the irreversibility of time and observation in quantum theory. In: Proceedings of the International School of Physics “Enrico Fermi”, Course 49. Foundations of Quantum Mechanics. Ed. by B. d’Espagnat. New York. Academic Press. 1971. Pp. 263–273.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hans Primas
    • 1
  1. 1.Laboratory of Physical ChemistryETH-ZentrumZürichSwitzerland

Personalised recommendations