Mathematical and Philosophical Questions in the Theory of Open and Macroscopic Quantum Systems

  • Hans Primas
Part of the NATO ASI Series book series (NSSB, volume 226)


It is a curious fact that our popular text books and most discussions of conceptual and philosophical problems of quantum mechanics are still based on the very first attempts to formalize this theory which have been worked out more than 50 years ago. These formulations of nonrelativistic quantum theory do, however, not represent the state of the art.


Classical Physic Quantum Object Open Quantum System Classical Statistical Mechanic Regulative Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Agnes and M. Rasetti: Word problem, undecidability and chaos. In: Advances in Nonlinear Dynamics and Stochastic Processes II. Ed. by G. Paladin and A. Vulpiani. Singapore. World Scientific. 1987. Pp. 1–24.Google Scholar
  2. [2]
    F. Bacon: De Dignitate et Auzumentis Scientarum. 1623. English translation: Of the Advancement and Proficience of Learning. Oxford. 1640.Google Scholar
  3. [3]
    N. Bohr: Quantum physics and philosophy, causality and complementarity. In: Philosophy in the Mid-Century. A Survey. Ed. by R. Klibansy. Florence. La Nuova Italia Editrice. 1958. Pp. 308–314.Google Scholar
  4. [4]
    O. Bratteli and D. W. Robinson: Operator Algebras and Quantum Statistical Mechanics. C*- and W*-Algebras, Symmetry Groups, Decomposition of States. Vol. 1. New York. Springer. 1979.Google Scholar
  5. [5]
    O. Bratteli and D. W. Robinson: Operator Algebras and Quantum Statistical Mechanics. Equilibrium States. Models in Quantum Statistical Mechanics. Vol. 2. New York. Springer. 1981.Google Scholar
  6. [6]
    M. L. d. Chiara: Logical self reference, set theoretical paradoxes and the measurement problem in quantum mechanics. J. Philosophical Logic 6, 331–347 (1977).MATHCrossRefGoogle Scholar
  7. [7a]
    P. Curie: Sur la symétrie dans les phénomènes physiques. Journal de Physique 3, 393 (1894).Google Scholar
  8. [7b]
    P. Curie: Reprinted m: Oeuvres de Pierre Curie. Paris. Gauthier-Villars. 1908. Pp. 118–141.Google Scholar
  9. [8]
    P. A. M. Dirac: The Principles of Quantum Mechanics. London. Oxford University Press. 1930.MATHGoogle Scholar
  10. [9]
    J. Dixmier: C*-Algebras. Amsterdam. North-Holland. 1977.MATHGoogle Scholar
  11. [10]
    D. A. Dubin: Solvable Models in Algebraic Statistical Mechanics. Oxford. Oxford University Press. 1974.Google Scholar
  12. [11]
    A. Einstein: Einleitende Bemerkung über Grundbegriffe. In: Louis de Broglie. Physicien et Penseur. Paris. Editions Albin Michel. 1953.Google Scholar
  13. [12]
    B. d’Espagnat: Conceptual Foundations of Quantum Mechanics. Second ed. London. Benjamin. 1976.Google Scholar
  14. [13]
    B. d’Espagnat: Physics and reality. In: Atti del Congresso Logica e Filosofia della Scienza, oggi. Vol. II Epistemologia e logica induttiva. Bologna. CLUEB. 1986. Pp. 73–78.Google Scholar
  15. [14]
    D. Finkelstein: Finite physics. In: The Universal Turing Machine. A Half-Century Survey. Ed. by R. Herken. Hamburg. Kammerer & Unverzagt. 1988. Pp. 349–376.Google Scholar
  16. [15]
    D. Finkelstein and S. R. Finkelstein: Computational complementarity. Int. J. Theor. Phys. 22, 753–779 (1983).MathSciNetMATHCrossRefGoogle Scholar
  17. [16]
    K. Gödel: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38, 173–198 (1931).CrossRefGoogle Scholar
  18. [17]
    A. S. Holevo: Probabilistic and Statistical Aspects of Quantum Theory. Amsterdam. North-Holland. 1982.MATHGoogle Scholar
  19. [18]
    R. V. Kadison and J. R. Ringrose: Fundamentals of the Theory of Operator Algebras. I. Elementary Theory. New York. Academic Press. 1983.Google Scholar
  20. [19]
    R. V. Kadison and J. R. Ringrose: Fundamentals of the Theory of Operator Algebras. II. Advanced Theory. Orlando. Academic Press. 1986.Google Scholar
  21. [20]
    A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin. Springer. 1933.Google Scholar
  22. [21]
    A. Komar: Undecidability of macroscopically distinguishable states in quantum fieldtheory. Phys. Rev. 133, B542–B544 (1964).MathSciNetADSCrossRefGoogle Scholar
  23. [22]
    B. O. Koopman: Hamiltonian systems and transformations in Hilbert space. Proc. Nat. Acad. Sci. U.S. 17, 315–318 (1931).ADSCrossRefGoogle Scholar
  24. [23]
    W. Kuyk: Complementarity in Mathematics. Dordrecht. Reidel. 1977.MATHGoogle Scholar
  25. [24]
    W. E. Lamb: Schrödinger’s cat. In: Reminiscences About a Great Physicist: Paul Adrien Maurice Dirac. Ed. by B. N. Kursunoglu and E. P. Wigner. Cambridge. Cambridge University Press. 1987. Pp. 249–261.Google Scholar
  26. [25]
    L. H. Loomis: Note on a theorem by Mackey. Duke Math. J. 19, 641–645 (1952).MathSciNetMATHCrossRefGoogle Scholar
  27. [26]
    G. W. Mackey: A theorem of Stone and von Neumann. Duke Math. J. 16, 313–326 (1949).MathSciNetMATHCrossRefGoogle Scholar
  28. [27]
    J. v. Neumann: Die Eindeutigkeit der Schrödingerschen Operatoren. Mathematische Annalen 104, 570–578 (1931).MathSciNetCrossRefGoogle Scholar
  29. [28]
    J. v. Neumann: Mathematische Grundlagen der Quantenmechanik. Berlin. Springer. 1932.MATHGoogle Scholar
  30. [29a]
    J. v. Neumann: Zur Operatorenmethode in der klassischen Mechanik. Annals of Mathematics 33, 587–642, (1932).MathSciNetCrossRefGoogle Scholar
  31. [29b]
    J. v. Neumann: Zur Operatorenmethode in der klassischen Mechanik. Annals of Mathematics 33, 789–791 (1932).MathSciNetCrossRefGoogle Scholar
  32. [30]
    W. Pauli: Naturwissenschaftliche und erkenntnistheoretische Aspekte der Ideen vom Unbewussten. Dialectica 8, 283–301 (1954).MathSciNetCrossRefGoogle Scholar
  33. [31]
    G. K. Pedersen: C*-Algebras and their Automorphism Groups. London. Academic Press. 1979.MATHGoogle Scholar
  34. [32]
    A. Peres and W. H. Zurek: Is quantum theory universally valid? Amer. J. Phys. 50, 807–810 (1982).ADSCrossRefGoogle Scholar
  35. [33]
    C. Piron: Quantum mechanics: fifty years later. In: Symposium on the Foundations of Modern Physics. 50 Years of the Einstein-Podolsky-Rosen Gedankenexperiment. Ed. by P. Lahti and P. Mittelstaedt. Singapore. World Scientific. 1985. Pp. 207–211.Google Scholar
  36. [34]
    M. Polanyi: Personal Knowledge. London. Routledge and Kegan Paul. 1958.Google Scholar
  37. [35]
    H. Primas: Theory reduction and non-Boolean theories. J. Math. Biology 4, 281–301 (1977).MathSciNetMATHCrossRefGoogle Scholar
  38. [36]
    H. Primas: Foundations of theoretical chemistry. In: The New Experimental Challenge to Theorists. Ed. by R. G. Woolley. New York. Plenum Press. 1980.Google Scholar
  39. [37]
    H. Primas: Chemistry, Quantum Mechanics and Reductionism. Berlin. Springer, second edition 1983. 1981.Google Scholar
  40. [38]
    H. Primas: Objekte in der Quantenmechanik. In: Grazer Gespräche 1986.Ganzheitsphysik. Ed. by M. Heindler and F. Moser. Graz. Technische Universität Graz. 1987. Pp. S. 163–201.Google Scholar
  41. [39]
    H. Primas: Contextual quantum objects and their ontic interpretation. In: Symposium on the Foundations of Modern Physics, 1987. The Copenhagen Interpretation 60 Years after the Como Lecture. Ed. by P. Lahti and P. Mittelstaedt. Singapore. World Scientific. 1987. Pp. 251–275.Google Scholar
  42. [40]
    H. Primas: Induced nonlinear time evolution of open quantum objects. In: Sixty-two Years of Uncertainty: Historical, Philosophical and Physics Inquiries into the Foundations of Quantum Mechanics. Ed. by A. I. Miller. New York. Plenum. 1990.Google Scholar
  43. [41]
    H. Primas: Time-asymmetric phenomena in biology. Complementary exophysical descriptions arising from deterministic quantum endophysics. In: Proceedings of the International Workshop “Information Biothermodynamics”. Torun. In press.Google Scholar
  44. [42]
    G. A. Raggio: States and Composite Systems in W*-algebraic Quantum Mechanics. Thesis ETH Zürich, No. 6824, ADAG Administration & Druck AG, Zürich. 1981.Google Scholar
  45. [43]
    F. Rapp: Kausale und teleologische Erklärungen. In: Formen teleologischen Denkens. Ed. by H. Poser. Berlin. TUB-Dokumentation, Heft 11, Technische Universität Berlin. 1981. Pp. 1–15.Google Scholar
  46. [44]
    A. Rosenberg: The number of irreducible representations of simple rings with no minimal ideals. Amer. J. Math. 75, 523–530 (1953).MathSciNetMATHCrossRefGoogle Scholar
  47. [45]
    O. E. Rössler: Endophysics. In: Real Brains, Artificial Minds. Ed. by J. L. Casti and A. Karlqvist. New York. North-Holland. 1987. Pp. 25–46.Google Scholar
  48. [46]
    J. Rothstein: Thermodynamics and some undecidable physical questions. Philosophy of Science 31, 40–48 (1964).CrossRefGoogle Scholar
  49. [47]
    S. Sakai: C*-Algebras and W*-Algebras. Berlin. Springer. 1971.Google Scholar
  50. [48]
    G. L. Sewell: Quantum Theory of Collective Phenomena. Oxford. Oxford University Press. 1986.Google Scholar
  51. [49]
    A. Shimony: The Quantum World. Manuscript for a yet unpublished book, distributed at a seminar at the ETH Zürich, Nov. 1984.Google Scholar
  52. [50]
    A. Shimony: Events and processes in the quantum world. In: Quantum Concepts in Space and Time. Ed. by R. Penrose and C. J. Isnam. Oxford. Clarendon Press. 1986. Pp. 182–203.Google Scholar
  53. [51]
    G. Spencer Brown: Laws of Form. London. Allen and Unwin. 1969.Google Scholar
  54. [52]
    M. H. Stone: Linear transformations in Hilbert space. III. Operational methods and group theory. Proc. Nat. Acad. U.S. 16, 172–175 (1930).ADSMATHCrossRefGoogle Scholar
  55. [53]
    F. Strocchi: Elements of Quantum Mechanics of Infinite Systems. Singapore. World Scientific. 1985.Google Scholar
  56. [54]
    A. Tarski: Logic, Semantics, Metamathematics. Oxford. Clarendon Press. 1956.Google Scholar
  57. [55]
    A. Tarski: Truth and proof. Scientific American 220, 63–77 (1969).CrossRefGoogle Scholar
  58. [56a]
    M. Zwick: Quantum measurement and Gödel’s proof. Speculations in Science and Technology 1, 135–145, (1978).Google Scholar
  59. [56b]
    M. Zwick: Quantum measurement and Gödel’s proof. Speculations in Science and Technology 1, 422–423 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Hans Primas
    • 1
  1. 1.Laboratory of Physical ChemistryETH-ZentrumZürichSwitzerland

Personalised recommendations