Advertisement

Old and New Ideas in the Theory of Quantum Measurement

  • Gian Carlo Ghirardi
  • Alberto Rimini
Part of the NATO ASI Series book series (NSSB, volume 226)

Abstract

The conceptually simplest interpretation of the quantum-mechanical wave function is that adopted by most textbooks. In the celebrated book by Dirac1 one reads — each state of a dynamical system at a particular time corresponds to a ket vector... if the ket vector corresponding to a state is multiplied by any complex number, not zero, the resulting ket vector will correspond to the same state (pages 16, 17). And later — a measurement always causes the system to jump into an eigenstate of the dynamical variable that is being measured (page 36). Similar sentences can be found, e. g., in the book by Messiah2 (pages 249 and 251). In the above statements the term state refers to a single system, not to a statistical ensemble of systems. This emerges clearly from the second statement, concerning reduction, which is quite incomprehensible in this form if the ket vector is not referred to a single system. In most textbooks the wave function up to a factor is interpreted just in this way — as the state of the single considered system.

Keywords

Wave Function State Vector Schr6dinger Equation Macroscopic Object Standard Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, The principles of quantum mechanics (Clarendon Press, Oxford, 1958).MATHGoogle Scholar
  2. 2.
    A. Messiah, Mécanique quantique, tome I (Dunod, Paris, 1959).Google Scholar
  3. 3.
    J.S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1987).Google Scholar
  4. 4.
    B. d’Espagnat, Conceptual foundations of quantum mechanics, second edition (W. A. Benjamin, Inc., Reading (Mass.), 1976).Google Scholar
  5. 5.
    F. Benatti, G.C. Ghirardi, A. Rimini, T. Weber, Il Nuovo Cimento 100 B (1987), p. 27.MathSciNetCrossRefGoogle Scholar
  6. 6.
    E. Squires, The mystery of the quantum world (Adam Hilger Ltd, Bristol and Boston, 1986).CrossRefGoogle Scholar
  7. 7a.
    A. Daneri, A. Loinger and G.M. Prosperi, Nuclear Physics 33 (1962), p. 297;MathSciNetADSMATHCrossRefGoogle Scholar
  8. 7b.
    A. Daneri, A. Loinger and G.M. Prosperi, II Nuovo Cimento 44B (1966), p. 119.ADSCrossRefGoogle Scholar
  9. 8.
    J.M. Jauch, Helvetica Physica Acta 37 (1964), p. 293.MathSciNetMATHGoogle Scholar
  10. 9.
    K. Hepp, Helvetica Physica Acta 45 (1972), p. 237.Google Scholar
  11. 10.
    E. Joos and H.D. Zeh, Zeitschrift für Physik B — Condensed Matter 59 (1985), p. 223.ADSCrossRefGoogle Scholar
  12. 11.
    H. Everett III, Reviews of Modern Physics 29 (1957), p. 454.MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    E.P. Wigner, in The scientist speculates, edited by I.J. Good (Heinemann, London and Basic Books, New York, 1961), p. 284.Google Scholar
  14. 13a.
    G.C. Ghirardi, A. Rimini, T. Weber, in Quantum Probability and Applications II (Heidelberg, 1984), edited by L. Accardi and W. von Waldenfels, Lecture Notes in Mathematics, vol. 1136 (Springer, Berlin, 1985), p. 223;CrossRefGoogle Scholar
  15. 13b.
    G.C. Ghirardi, A. Rimini, T. Weber, in Fundamental Aspects of Quantum Theory (Como, 1985), edited by V. Gorini and A. Frigerio (Plenum Press, New York and London, 1986), p. 57.CrossRefGoogle Scholar
  16. 14a.
    G.C. Ghirardi, A. Rimini, T. Weber, Physical Review D 34 (1986), p. 470;MathSciNetADSMATHCrossRefGoogle Scholar
  17. 14b.
    G.C. Ghirardi, A. Rimini, T. Weber, Physical Review D 36 (1987), p. 3287.MathSciNetADSCrossRefGoogle Scholar
  18. 15.
    J.S. Bell, in SchrödingerCentenary celebration of a polymath, edited by C.W. Kilmister (Cambridge University Press, Cambridge, 1987), p. 41.Google Scholar
  19. 16.
    A.I.M. Rae, preprint, University of Birmingham.Google Scholar
  20. 17.
    P. Pearle, Physical Review A 39 (1989), p. 2277.ADSCrossRefGoogle Scholar
  21. 18.
    G.C. Ghirardi, P. Pearle, A. Rimini, Trieste preprint IC/89/44.Google Scholar
  22. 19.
    G. Lindblad, Communications in Mathematical Physics 48 (1976), p. 119.MathSciNetADSMATHCrossRefGoogle Scholar
  23. 20.
    E.B. Davies, Quantum theory of open systems (Academic Press, London-New York-San Francisco, 1976).MATHGoogle Scholar
  24. 21.
    H.R Stapp, preprint LBL — 26968.Google Scholar
  25. 22.
    F. Benatti, G.C. Ghirardi, A. Rimini, T. Weber, Il Nuovo Cimento 101B (1988), p. 333.CrossRefGoogle Scholar
  26. 23.
    P. Pearle, these proceedings.Google Scholar
  27. 24.
    L. Diósi, preprint KFKI — 1988 – 55/A.Google Scholar
  28. 25.
    G.C. Ghirardi, R. Grassi, A. Rimini/Trieste preprint IC/89/105.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Gian Carlo Ghirardi
    • 1
  • Alberto Rimini
    • 2
  1. 1.Dipartimento di Fisica TeoricaUniversità di TriesteTriesteItalia
  2. 2.Dipartimento di Fisica Nucleare e TeoricaUniversità di PaviaPaviaItalia

Personalised recommendations