Fitness and Asymmetry Modification as an Evolutionary Process A Study in the Australian Sheep Blowfly, Lucilia cuprina and Drosophila melanogaster

  • John A. Mckenzie
  • Philip Batterham
  • Louise Baker
Part of the Monographs in Evolutionary Biology book series (MEBI)


Biologists have usually considered resistance to pesticides as an applied problem, albeit one of considerable importance. An ever increasing range of organisms have become resistant to chemical agents used in their control, adding to the costs of a number of industries (Georghiou, 1986). The future availability of effective new control agents is also a cause of concern (Metcalf, 1980; Hotson, 1985).


Relative Fitness Susceptible Strain Directional Asymmetry Developmental Stability Organophosphorus Insecticide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedi, Z. H., and Brown, A. W. A., 1960, Development and reversion of DDT-resistance in Aedes aegypti, Can. J. Genet. Cytol. 2:252–261.Google Scholar
  2. Amin, A. M., and White, G. B., 1984, Relative fitness of organophosphateresistant and susceptible strains of Culex quinquefasciatus Say (Diptera: Culicidae), Bull. ent. Res. 74:591–598.CrossRefGoogle Scholar
  3. Artavanis-Tsakonas, S., 1988, The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila, Trends Genet. 4:95–100.CrossRefGoogle Scholar
  4. Beeman, R. W., and Nanis, S. M., 1986, Malathionin resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae), J. econ. Ent. 79:580–587.Google Scholar
  5. Brown, A. W. A., and Pal, R., 1971, Insecticide Resistance in Arthropods, W.H.O., Geneva. Charlesworth, B., 1979, Evidence against Fisher’s theory of dominance, Nature, Lond. 278:848–849.Google Scholar
  6. Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci, Genetics 79:101–113.PubMedGoogle Scholar
  7. Clarke, G. M., and McKenzie, J. A., 1987, Developmental stability of insecticide resistant phenotypes in blowfly; a result of canalizing natural selection, Nature, Lond. 325:345–346.CrossRefGoogle Scholar
  8. Crow, J. F., 1957, Genetics of insect resistance to chemicals, A. Rev. Ent. 2:227–246.CrossRefGoogle Scholar
  9. Daly, J., and McKenzie, J. A., 1986, Resistance management strategies in Australia: The Heliothis and “Wormkill” programmes, in; Pests and Diseases, BCPC, Brighton (U.K.), pp. 951–959.Google Scholar
  10. Fisher, R. A., 1958, The Genetical Theory of Natural Selection, 2nd ed., Dover, New York.Google Scholar
  11. Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G., 1981, Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R-D (Diptera: Calliphoridae) and possible correlations with the linkage maps of Musca domestica L. and Drosophila melanogaster (Mg.), Genet. Res. 37:55–69.CrossRefGoogle Scholar
  12. Georghiou, G. P., 1972, The evolution of resistance to pesticides, Annu. Rev. Ecol. & Syst. 3:133–168.CrossRefGoogle Scholar
  13. Georghiou, G. P., 1983, Management of resistance in arthropods, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 769–792.CrossRefGoogle Scholar
  14. Georghiou, G. P., 1986, The magnitude of the resistance problem, in: Pesticide Resistance: Strategies and Tactics for Management, National Academy Press, Washington, D.C., pp. 14–43.Google Scholar
  15. Hartley, D. A., Preiss, A., and Artavanis-Tsakonas, S., 1988, A deduced gene product from the Drosophila neurogenic locus, Enhancer of split, shows homology to mammalian G-protein B subunit, Cell 55:785–795.PubMedCrossRefGoogle Scholar
  16. Helle, W., 1965, Resistance in the acarina: mites, Adv. Acarol. 2:71–93.Google Scholar
  17. Hotson, I. K., 1985, New developments in nematode control: the role of the animal health products industry, in: Resistance in Nematodes to Anthelmintic Drugs (N. Anderson, and P. J. Walker, eds), CSIRO, Aust. Wool Corp., Sydney, pp. 117–125.Google Scholar
  18. Hughes, P. B., and Devonshire, A. L., 1982, The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 18:289–297.CrossRefGoogle Scholar
  19. Hughes, P. B., and Raftos, D. A., 1985, Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann)(Diptera: Calliphoridae), Bull. ent. Res. 75:535–544.CrossRefGoogle Scholar
  20. Jones, J. S., 1987, An asymmetrical view of fitness, Nature, Lond. 325:298–299.CrossRefGoogle Scholar
  21. Kidd, S., and Young, M. W., 1986, Transposon-dependent mutant phenotypes at the Notch locus of Drosophila, Nature, Lond. 323:89–91.CrossRefGoogle Scholar
  22. Leary, R. F., Allendorf, F. W., and Knudsen, K. L., 1984, Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes, Am. Nat. 124:540–551.CrossRefGoogle Scholar
  23. Lenski, R. E., 1988, Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4, Evolution 42:433–440.CrossRefGoogle Scholar
  24. Lerner, I. M., 1954, Genetic Homeostasis, Wiley, New York.Google Scholar
  25. Maddern, R. J., Foster, G. G., Whitten, M. J., Clarke, G. M., Konovalov, C. A., Arnold, J. T. A., and Maffi, G., 1986, The genetic mutations of Lucilia cuprina R.-D. (Diptera: Calliphoridae), CSIRO, Div. Entomol. Report No. 37, Canberra.Google Scholar
  26. Martin, P. J., McKenzie, J. A., and Stone, R. A., 1988, The inheritance of thiabendazole resistance in Trichostrongylus coluhriformis, Int. J. Parasitol. 18:703–709.CrossRefGoogle Scholar
  27. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D., and Wolpert, L., 1985, Developmental constraints and evolution, Q. Rev. Biol. 60:266–287.Google Scholar
  28. McEnroe, W. D., and Naegele, J. A., 1968, The coadaptive process in an organophosphorus-resistant strain of the two-spotted spider mite, Tetranychus urticae, Ann. ent. Soc. Am. 61:1055–1059.Google Scholar
  29. McKenzie, J. A., 1985, Genetics of resistance to chemotherapeutic agents, in: Resistance in Nematodes to Anthelmintic Drugs (N. Anderson, and P. J. Waller, eds), CSIRO, Aust. Wool Corp., Sydney, pp. 89–95.Google Scholar
  30. McKenzie, J. A., 1987, Insecticide resistance in the Australian sheep blowfly — messages for pesticide usage, Chem. Ind. 8:266–269.Google Scholar
  31. McKenzie, J. A., and Clarke, G. M., 1988, Diazinon resistance, fluctuating asymmetry and fitness in the Australian sheep blowfly, Lucilia cuprina, Genetics 120:213–220.Google Scholar
  32. McKenzie, J. A., and Game, A. Y., 1987, Diazinon resistance in Lucilia cuprina: mapping of a fitness modifier, Heredity 59:381–391.CrossRefGoogle Scholar
  33. McKenzie, J. A., and Purvis, A., 1984, Chromosomal localisation of fitness modifiers of diazinon resistance genotypes of Lucilia cuprina, Heredity 53:625–634.CrossRefGoogle Scholar
  34. McKenzie, J. A., and Whitten, M. J., 1982, Selection for insecticide resistance in the Australian sheep blowfly, Lucilia cuprina, Experientia 38:84–85.CrossRefGoogle Scholar
  35. McKenzie, J. A., and Whitten, M. J., 1984, Estimation of relative viabilities of insecticide resistance genotypes of the Australian sheep blowfly, Lucilia cuprina, Aust. J. hiol. Sci. 37:45–52.Google Scholar
  36. McKenzie, J. A., Dearn, J. M., and Whitten, M. J., 1980, Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blowfly, Lucilia cuprina, Aust. J. hiol. Sci. 33:85–95.Google Scholar
  37. McKenzie, J. A., Whitten, M. J., and Adena, M. A., 1982, The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina, Heredity 49:1–9.CrossRefGoogle Scholar
  38. Metcalf, R. L., 1980, Changing role of insecticides in crop protection, A. Rev. Ent. 25:219–256.CrossRefGoogle Scholar
  39. Modi, W. S., Wayne, R. K., and O’Brien, S. J., 1987, Analysis of fluctuating asymmetry in cheetahs, Evolution 41:227–228.CrossRefGoogle Scholar
  40. Muggleton, J., 1986, Selection for malathion resistance in Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae): fitness values of resistant and susceptible phenotypes and their inclusion in a general model describing the spread of resistance, Bull. ent. Res. 76:469–480.CrossRefGoogle Scholar
  41. Palmer, A. R., and Strobeck, C., 1986, Fluctuating asymmetry: measurement, analysis, patterns, Annu. Rev. Ecol. & Syst. 17:391–421.CrossRefGoogle Scholar
  42. Parsons, P. A., 1961, Fly size, emergence time and sternopleural chaeta number in Drosophila, Heredity 16:455–473.CrossRefGoogle Scholar
  43. Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.CrossRefGoogle Scholar
  44. Soulé, M., 1967, Phenetics of natural populations. II. Asymmetry and evolution in a lizard, Am. Nat. 101:141–160.CrossRefGoogle Scholar
  45. Swain, D. P., 1987, A problem with the use of meristic characters to estimate developmental stability, Am. Nat. 129:761–768.CrossRefGoogle Scholar
  46. Tabashnik, B. E., and Croft, B. A., 1982, Managing pesticide resistance crop-arthropod complexes: interactions between biological and operational factors, Environ. Entomol. 11:1137–1144.Google Scholar
  47. Van Valen, L., 1962, A study of fluctuating asymmetry, Evolution 16:125–142.CrossRefGoogle Scholar
  48. Waddington, C. H., 1957, The Strategy of the Genes, Allen and Unwin, London.Google Scholar
  49. Wayne, R. K., Modi, W. S., and O’Brien, S. J., 1986, Morphological variability and asymmetry in the cheetah (Acinonyx jubatus), a genetically uniform species, Evolution 40:78–85.CrossRefGoogle Scholar
  50. Whitehead, J. R., Roush, R. T., and Norment, B. R., 1985, Resistance stability and coadaptation in diazinon-resistant house flies (Diptera: Muscidae), J. econ. Ent. 78:25–29.Google Scholar
  51. Willig, M. R., and Owen, R. D., 1987, Fluctuating asymmetry in the cheetah: methodological and interpretive concerns, Evolution 41:225–227.CrossRefGoogle Scholar
  52. Whitten, M. J., and McKenzie, J. A., 1982, The genetic basis for pesticideresistance, Proc. 3rd Aust. Conf. Grassland Invertebrate Ecol., South Aust. Gov. Printer, Adelaide, pp. 1–16.Google Scholar
  53. Whitten, M. J., Dearn, J. M., and McKenzie, J. A., 1980, Field studies on insecticide resistance in the Australian sheep blowfly, Lucilia cuprina, Aust. J. biol. Sci. 33:725–735.Google Scholar
  54. Yedvobnick, B., Muskavitch, M. A. T., Wharton, K. A., Halpern, P. E., Grimwade, B. G., and Artavanis-Tsakonas, S., 1985, Molecular genetics of Drosophila neurogenesis, Cold Spring Harb. Symp. Quant. Biol. 50:841–854.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John A. Mckenzie
    • 1
  • Philip Batterham
    • 1
  • Louise Baker
    • 1
  1. 1.Department of GeneticsUniversity of MelbourneParkvilleAustralia

Personalised recommendations