Direction of Life History Evolution in Drosophila mojavensis

  • William J. Etges
Part of the Monographs in Evolutionary Biology book series (MEBI)


Studies of the genetic basis for life history evolution involving analysis of demographic change in response to patterns of environmental variability have yet to provide a general explanation for the diversity of life histories often observed among species. Part of this problem is due to the lack of information about the forces actually responsible for causing the genetic variation observed in natural populations, without which we cannot evaluate the significance of the variation measured or the precise outcome in long-term life history evolution. Adaptation to environmental variability can lead to different equilibrium life histories all with equivalent fitnesses (Schaffer and Rosenzweig, 1977). The form of life history expected will depend on the pattern of environmental variation and degree of correlation among life history traits (Tuljapurkar, 1988; Orzack and Tuljapurkar, 1989). Only when observed genetic variation and covariation in components of fitness can be associated with the causes in nature responsible for their maintenance will understanding of the microevolutionary processes directing life history evolution be possible (Istock et al., 1976; Reznick and Endler, 1982; Etges, 1989a).


Life History Life History Trait Mainland Population Sexual Isolation Life History Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W. W., 1968, Further evidence for coadaptation in crosses between geographic populations of Drosophila pseudoobscura, Genet. Res. 12:317–330.CrossRefGoogle Scholar
  2. Carson, H. L., 1971, Speciation and the founder principle, Stadler Genet.Symp. 3:51–70.Google Scholar
  3. Carson, H. L., 1975, The genetics of speciation at the diploid level, Am.Nat. 109:83–92.CrossRefGoogle Scholar
  4. Carson, H. L., 1978, Speciation and sexual selection in Hawaiian Drosophila, in: Ecological Genetics: The Interface (P. F. Brussard, ed.), Springer-Verlag, New York, pp. 93–107.CrossRefGoogle Scholar
  5. Carson, H. L., 1982, Speciation as a major reorganization of polygenic balances, in: Mechanisms of Speciation (C. Barigozzi, ed.), A. R. Liss, New York, pp. 411–433.Google Scholar
  6. Carson, H. L., and Templeton A. R., 1984, Genetic revolutions in relation to speciation phenomena: The founding of new populations, Annu. Rev.Ecol. & Syst. 15:97–131.CrossRefGoogle Scholar
  7. Craddock, E. M., 1974, Reproductive relationships between homosequential species of Hawaiian Drosophila, Evolution 28:593–606.CrossRefGoogle Scholar
  8. Dobzhansky, Th., 1940, Speciation as a stage in evolutionary divergence, An.Nat. 74:312–321.CrossRefGoogle Scholar
  9. Dobzhansky, Th., 1970, Genetics of the Evolutionary Process, Columbia Univ. Press, New York.Google Scholar
  10. Ehrman, L., and Wasserman, M., 1987, The significance of asymmetrical sexual isolation, Evol. Biol. 21:1–20.CrossRefGoogle Scholar
  11. Etges, W. J., 1989a, Chromosomal influences on life-history variation along an altitudinal transect in Drosophila robusta, Am. Nat. 133:83–110.CrossRefGoogle Scholar
  12. Etges, W. J., 1989b, Divergence in cactophilic Drosophila: The evolutionary significance of adult ethanol metabolism, Evolution 43: 1316–1319.CrossRefGoogle Scholar
  13. Etges, W. J., 1989c, Evolution of developmental homeostasis in Drosophilamojavensis, Evol. Ecol. 3: 189–201.CrossRefGoogle Scholar
  14. Etges, W. J., and Heed, W. B., 1987, Sensitivity to larval density in populations of Drosophila mojavensis: Influences of host plant variation on components of fitness, Oecologia 71:375–381.CrossRefGoogle Scholar
  15. Etges, W. J., and Klassen C. S., 1989, Influences of atmospheric ethanol on adult Drosophila mojavensis: Altered metabolic rates and increases in fitness among populations, Physiol. Zool. 62:170–193.Google Scholar
  16. Fogleman, J. C., and Starmer W. T., 1985, Analysis of community structure of yeasts associated with decaying stems of cactus. III. Stenocereusthurberi, Microb. Ecol. 11:165–173.CrossRefGoogle Scholar
  17. Futuyma, D. J. and Mayer G. C., 1980, Non-allopatric speciation in animals, Syst. Zool. 29:254–271.CrossRefGoogle Scholar
  18. Gastil, R. G., Phillips, R. P., and Allison, E. C., 1975, Reconnaissance geology of the state of Baja California, in: The Geological Society of America, Inc., Memoir 140, Boulder, Colorado, pp. 139–143.Google Scholar
  19. Heed, W. B., 1978, Ecology and genetics of Sonoran Desert Drosophila, in: Ecological Genetics: The Interface (P. F. Brussard, ed.), Springer-Verlag, New York, pp. 109–126.CrossRefGoogle Scholar
  20. Heed, W. B., 1981, Central and marginal populations revisited, Drosoph.Inf. Serv. 56:60–61.Google Scholar
  21. Heed, W. B., 1982, The origin of Drosophila in the Sonoran desert, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila ModelSystem (J.S.F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 65–80.Google Scholar
  22. Heed, W. B., and Mangan R. L., 1986, Community ecology of the Sonoran Desert Drosophila, in: The Genetics and Biology of Drosophila, Vol. 3E (M. Ashburner, H. L. Carson, and J.N. Thompson Jr., eds), Academic Press, New York, pp. 311–345.Google Scholar
  23. Istock, C. A., 1982, Some theoretical considerations concerning life history evolution, in: Evolution and Genetics of Life Histories (H. Dingle and J. P. Hegmann, eds), Springer-Verlag, New York, pp. 7–20.CrossRefGoogle Scholar
  24. Istock, C. A., Zisfein, J., and Vavra, K., 1976, Ecology and evolution of the pitcher-plant mosquito. 2. The substructure of fitness, Evolution 30:535–547.CrossRefGoogle Scholar
  25. Johnson, W. R., 1980, Chromosomal polymorphism in natural populations of the desert adapted species, Drosophila mojavensis, PhD Dissertation, University of Arizona.Google Scholar
  26. Johnston, J. S., and Heed, W. B., 1976, Dispersal of desert-adapted Drosophila: the Saguaro-breeding Drosophila nigrospiracula, Am. Nat. 110:629–651.CrossRefGoogle Scholar
  27. Kaneshiro, K. Y., 1980, Sexual isolation, speciation and the direction of evolution, Evolution 34:437–444.CrossRefGoogle Scholar
  28. Koepfer, H. R., 1987a, Selection for sexual isolation between geographic forms of Drosophila mojavensis. I. Interactions between the selected forms, Evolution 41:37–48.CrossRefGoogle Scholar
  29. Koepfer, H. R., 1987b, Selection for sexual isolation between geographic forms of Drosophila mojavensis. II. Effects of selection on mating preference and propensity, Evolution 41:1409–1412.CrossRefGoogle Scholar
  30. McFarquhar, A. M., and Robertson, F. W., 1963, The lack of evidence for coadaptation in crosses between geographical races of Drosophilasubobscura, Coll., Genet. Res. 4:104–131.CrossRefGoogle Scholar
  31. Mangan, R. L., 1982, Adaptations to competition in cactus breedin Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 257–272.Google Scholar
  32. Markow, T. A., Fogleman, J. C., and Heed, W. B., 1983, Reproductive isolation in Sonoran Desert Drosophila, Evolution 37:649–652.Google Scholar
  33. Mayr, E., 1963, Animal Species and Evolution, Harvard Univ. Press, Cambridge, Massachusetts.Google Scholar
  34. Mettler, L. E., 1963, D. mojavensis baja, a new form in the mulleri complex, Drosoph. Inf. Serv. 28:57–58.Google Scholar
  35. Muller, H. J., 1939, Reversibility in evolution considered from the standpoint of genetics, Biol. Rev. 14:261–280.CrossRefGoogle Scholar
  36. Müller, H. J., 1942, Isolating mechanisms, evolution, and temperature, Biol. Symp. 6:71–125.Google Scholar
  37. Nei, M., 1976, Mathematical models of speciation and genetic distance, in: Population Genetics and Ecology (S. Karlin and E. Nevo, eds), Academic Press, New York, pp. 723–765.Google Scholar
  38. Nei, M., Maruyama, T., and Wu, C.-I., 1983, Models of evolution of reproductive isolation, Genetics 103:557–579.PubMedGoogle Scholar
  39. Orzack, S. H., and Tuljapurkar, S. D., 1989, Population dynamics in variable environments VII. The demography and evolution of iteroparity, Am. Nat. 133:901–923.CrossRefGoogle Scholar
  40. Paterson, H. E. H., 1981, The continuing search for the unknown and unknowable: A critique of contemporary ideas on speciation, S. Afr. J.Sci. 77:113–119.Google Scholar
  41. Rice, W. R., 1987, Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character, Evol. Ecol. 1:301–314.CrossRefGoogle Scholar
  42. Reznick, D., and Endler, J. A., 1982, The impact of predation on life history evolution in Trinidadian guppies, Evolution 36:160–177.CrossRefGoogle Scholar
  43. Roff, D. A., 1981, On being the right size, Am. Nat. 118:405–422.CrossRefGoogle Scholar
  44. Ruiz, A., and Heed, W. B., 1988, Host plant specificity in the cactophilic Drosophila mulleri species complex, J. Anim. Ecol. 57:237–249.CrossRefGoogle Scholar
  45. Schaffer, W. M., and Rosenzweig, M. L., 1977, Selection for optimal life histories. II. Multiple equilibria and the evolution of alternative reproductive strategies, Ecology 58:60–72.CrossRefGoogle Scholar
  46. Starmer, W. T., 1982, Analysis of community structure of yeasts associated with decaying stems of cactus. I. Stenocereus gummosus, Microb. Ecol. 8:71–81.CrossRefGoogle Scholar
  47. Templeton, A. R., 1980, The theory of speciation via the founder principle, Genetics 94:1011–1038.PubMedGoogle Scholar
  48. Tuljapurkar, S. D., 1988, An uncertain life: Demography in random environments, Working Paper Series #10, The Stanford Institute for Population and Resource Studies, 97 pp.Google Scholar
  49. Vetukhiv, M., 1953, Viability of hybrids between local populations of Drosophila pseudoobscura, Proc. natn. Acad. Sci. USA 39:30–34.CrossRefGoogle Scholar
  50. Vetukhiv, M., 1954, Integration of the genotype in local populations of three species of Drosophila, Evolution 8:241–251.Google Scholar
  51. Walsh, J. B., 1983, Rate of accumulation of reproductive isolation in chromosome arrangements, Am. Nat. 120:510–532.CrossRefGoogle Scholar
  52. Wasserman, M., and Koepfer, R. H., 1977, Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis, Evolution 31:812–823.CrossRefGoogle Scholar
  53. White, M. J. D., 1978, Modes of Speciation, W. H. Freeman. USA.Google Scholar
  54. Wright, S., 1932, The roles of mutation, inbreeding, crossbreeding and selection in evolution, Proc. 6th Internatl. Cong. Genetics 1:356–366.Google Scholar
  55. Wright, S., 1977, Evolution and the Genetics of Populations, Vol. 3. Univ. Chicago Press, Chicago.Google Scholar
  56. Wright, S., 1982, Character change, speciation, and the higher taxa, Evolution 36:427–443.CrossRefGoogle Scholar
  57. Zouros, E., 1973, Genie differentiation associated with the early stages of speciation in the mulleri subgroup of Drosophila, Evolution 27:601–621.Google Scholar
  58. Zouros, E., 1981, The chromosomal basis of sexual isolation in two sibling species of Drosophila: D. arizonensis and D. mojavensis, Genetics 97:703–718.PubMedGoogle Scholar
  59. Zouros, E., and D’Entremont, C. J., 1980, Sexual isolation among populations of Drosophila mojavensis: response to pressure from a related species, Evolution 34:421–430.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • William J. Etges
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations