Advertisement

Genetic Differentiation Among Island Populations and Species of Cactophilic Drosophila in the West Indies

  • W. B. Heed
  • A. Sánchez
  • R. Armengol
  • A. Fontdevila
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

In 1954, Marvin Wasserman, in his initial cytological analysis of the repleta species group of Drosophila, discovered there were six “mulleri-like” species united and set apart from the others by one fixed inversion common to all six forms and five other inversions shared among the species in various combinations, even though in the homozygous condition. Also of special interest, which was not considered an issue at the time, was the fact that three of the species, when hybridized, showed no inversions in the salivary chromosomes; D. mulleri, D. aldrichi and D. wheeleri were homosequential in banding pattern (Wasserman, 1954).

Keywords

Genetic Distance Genetic Differentiation Island Population Genetic Identity Cophenetic Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armengol, R. M., 1986, Relaciones filogéneticas en el cluster mulleri de Drosophila, Tesis de Licenciatura, Universidad Autónoma de Barcelona, (Bellatera), Barcelona.Google Scholar
  2. Ayala, F. J., and Powell, J. R., 1972, Allozymes as diagnostic characters of sibling species of Drosophila, Proc. natn. Acad. Sci. USA 69:1094–1096.Google Scholar
  3. Ayala, F. J., Powell, J. R., Tracey, M. L., Mauro, C. A., and Pérez-Salas, S., 1972, Enzyme variability in the Drosophila willistoni group. IV. Genic variation in natural populations of Drosophila willistoni, Genetics 70:113–139.PubMedGoogle Scholar
  4. Barker, J. S. F., and Mulley, J. C., 1976, Isozyme variation in natural populations of Drosophila buzzatii, Evolution 30:213–233.CrossRefGoogle Scholar
  5. Barker, J. S. F., and Starmer, W. T., 1982, Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System, Academic Press Australia, Sydney.Google Scholar
  6. Barker, J. S. F., Sene, F. M., East, P. D., and Pereira, M. A. Q. R., 1985, Allozyme and chromosomal polymorphism of Drosophila buzzatii in Brazil and Argentina, Genetica 67:161–170.CrossRefGoogle Scholar
  7. Barker, J. S. F., East, P. D., and Weir, B. S., 1986, Temporal and micro-geographic variation in allozyme frequencies in a natural population of Drosophila buzzatii, Genetics 112:577–611.PubMedGoogle Scholar
  8. Britton, N. L., and Millspaugh, C. F., 1962, The Bahama Flora, Hafner Publ. Co., New York.Google Scholar
  9. Coyne, J. A., and Orr, H. A., 1989, Patterns of speciation in Drosophila, Evolution 43:362–381.CrossRefGoogle Scholar
  10. Farris, J. S., 1972, Estimating phylogenetic trees from distance matrices, Am. Nat. 106:645–668.CrossRefGoogle Scholar
  11. Fitch, W. M., and Margoliash, E., 1967, Construction of phylogenetic trees, Science 155:279–284.PubMedCrossRefGoogle Scholar
  12. Fontdevila, A., 1982, Recent developments on the evolutionary history of the Drosophila mulleri complex in South America, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 81–95.Google Scholar
  13. Fontdevila, A., 1988, The evolutionary potential of the unstable genome, in: Population Genetics and Evolution (G. de Jong, ed.), Springer-Verlag, Berlin, pp. 251–263.CrossRefGoogle Scholar
  14. Fontdevila, A., Pla, C., Hasson, E., Wasserman, M., Sánchez, A., Naveira, H., and Ruiz, A., 1988, Drosophila koepferae: a new member of the Drosophila serido (Diptera: Drosophilidae) superspecies taxon, Ann. ent. Soc. Am. 81:380–385.Google Scholar
  15. Grimaldi, D. A., 1988, Relicts in the Drosophilidae (Diptera), in: Zoogeography of Caribbean Insects (J. K. Liebherr, ed.), Cornell Univ. Press, Ithaca, pp. 183–213.Google Scholar
  16. Heed, W. B., 1989, Origin of Drosophila of the Sonoran Desert II. In search for a founder event, in: Genetics, Speciation, and the Founder Principle (L. V. Giddings, K. Y. Kaneshiro, and W. W. Anderson, eds), Oxford Univ. Press, New York, pp. 253–278.Google Scholar
  17. Kojima, K., Gillespie, J., and Tobari, Y. N., 1970, A profile of Drosophila species’ enzymes assayed by electrophoresis. I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolizing systems and some other enzymes, Biochem. Genet. 4:627–637.PubMedCrossRefGoogle Scholar
  18. Loukas, M., Krimbas, C. B., Mavragani-Tsipidou, P., and Kastristsis, C. D., 1979, The genetics of allozyme loci in Drosophila subobscura and its photographic chromosome maps, J. Hered. 70:17–26.PubMedGoogle Scholar
  19. Marshall, L. G., 1988, Land mammals and the great American interchange, Amer. Sci. 76:380–388.Google Scholar
  20. McDonald, J. F., 1983, The molecular basis of adaptation: a critical review of revelant ideas and observations, Annu. Rev. Ecol. & Syst. 14:77–102.CrossRefGoogle Scholar
  21. MacIntyre, R. J., and Collier, G. E., 1986, Protein evolution in the genus Drosophila, in: The Genetics and Biology of Drosophila, vol. 3e (M. Ashburner, H. L. Carson, and J. N. Thompson, eds), Academic Press, London, pp. 39–146.Google Scholar
  22. Naveira, H., and Fontdevila, A., 1985, The evolutionary history of Drosophila buzzatii IX. High frequencies of new chromosome rearrange-merits induced by introgressive hybridization, Chromosoma 91:87–94.PubMedCrossRefGoogle Scholar
  23. Nei, M., 1972, Genetic distance between populations, Am. Nat. 106:283–292.CrossRefGoogle Scholar
  24. Nei, M., 1977, F-statistics and analysis of gene diversity in subdivided populations, Ann. Hum. Genet. 41:225–233.PubMedCrossRefGoogle Scholar
  25. Nei, M., 1987, Molecular Evolutionary Genetics, Columbia Univ. Press, New York.Google Scholar
  26. Olson, S. L., and Pregill, G. K., 1982, Introduction to the paleontology of Bahaman vertebrates, in: Fossil Vertebrates from the Bahamas (S. L. Olson, ed.), Smithsonian Contribution to Paleontology No. 48, Smithsonian Inst. Press, Washington, D.C., pp. 1–7.Google Scholar
  27. Poulik, M. D., 1957, Starch gel electrophoresis in a discontinuous system of buffers, Nature 180:1477–1479.PubMedCrossRefGoogle Scholar
  28. Pregill, G. K., and Olson, S. L., 1981, Zoogeography of West Indian vertebrates in relation to Pleistocene climatic cycles, Annu. Rev. Ecol. & Syst. 12:75–98.CrossRefGoogle Scholar
  29. Prager, E. M., and Wilson, A. C., 1976, Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of cracid birds, J. Mol. Evol. 9:45–57.PubMedCrossRefGoogle Scholar
  30. Richardson, R. H., Richardson, M. E., and Smouse, P. E., 1975, Evolution of electrophoretic mobility in the Drosophila mulleri complex, in: Isozymes, IV: Genetics and Evolution (C. L. Markert, ed.), Academic Press, New York, pp. 533–545.Google Scholar
  31. Richardson, R. H., and Smouse, P. E., 1976, Patterns of molecular variation. I. Interspecific comparisons of electromorphs in the Drosophila mulleri complex, Biochem. Genet. 14:447–466.PubMedCrossRefGoogle Scholar
  32. Richardson, R. H., Smouse, P. E., and Richardson, M. E., 1977, Patterns of molecular variation. II. Associations of electrophoretic mobility and larval substrate within species of the Drosophila mulleri complex, Genetics 85:141–154.PubMedGoogle Scholar
  33. Rogers, J. S., 1972, Measures of genetic similarity and genetic distance, Univ. Tex. Pubis 7213:145–153.Google Scholar
  34. Ruiz, A., and Heed, W. B., 1988, Host-plant specificity in the cactophilic Drosophila mulleri species complex, J. Anim. Ecol. 57:237–249.CrossRefGoogle Scholar
  35. Ruiz, A., Heed, W. B., and Wasserman, M., 1990, The evolution of the mojavensis cluster of cactophilic Drosophila with descriptions of two new species, J. Hered. 81:30–42.PubMedGoogle Scholar
  36. Sánchez, A., 1986, Relaciones filogenéticas en los clusters buzzatii y martensis (grupo repleta) de Drosophila, Tesis Doctoral, Universidad Autónoma de Barcelona (Bellaterra), Barcelona.Google Scholar
  37. Sene, F. M., and Carson, H. L., 1977, Genetic variation in Hawaiian Drosophila. IV. Allozymic similarity between D. silvestris and D. het-eroneura from the island of Hawaii, Genetics 86:187–198.PubMedGoogle Scholar
  38. Shaw, C. R., and Prasad, R., 1970, Starch gel electrophoresis of enzymes. A compilation of recipes. Biochem. Genet. 4:297–318.PubMedCrossRefGoogle Scholar
  39. Smithies, O., 1955, Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults, Biochem. J. 61:629–641.PubMedGoogle Scholar
  40. Starmer, W. T., Lachance, M., and Phaff, H. J., 1987, A comparison of yeast communities found in necrotic tissue of cladodes and fruits of Opuntia stricta on islands in the Caribbean Sea and where introduced into Australia, Microb. Ecol. 14:179–192.CrossRefGoogle Scholar
  41. Starmer, W. T., Lachance, M., Phaff, H. J., and Heed, W. B., 1990, The bio-geography of yeasts associated with decaying cactus tissue in North America, the Caribbean, and Northern Venezuela, Evol. Biol. 24:253–296.Google Scholar
  42. Sturtevant, A. H., 1921, North American species of Drosophila, Carnegie Inst. of Wash., Publ. 301, Washington, D.C., pp. 1–150.CrossRefGoogle Scholar
  43. Swofford, D. L., 1981, On the utility of the distance Wagner procedure, in: Advances in Cladistics (V. A. Funk, and D. R. Brooks, eds), N.Y. Botanical Garden Press, New York, pp. 25–44.Google Scholar
  44. Swofford, D. L., 1985, PAUP: Phylogenetic analysis using parsimony. User’s manual, Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  45. Swofford, D. L., and Selander, R. B., 1981, BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics, J. Hered. 72:281–283.Google Scholar
  46. Thorpe, J. P., 1982, The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics, Annu. Rev. Ecol. & Syst. 13:139–168.CrossRefGoogle Scholar
  47. Vilela, C. R., 1983, A revision of the Drosophila repleta species group (Diptera, Drosophilidae), Rev. Bras. Ent. 27:1–114.Google Scholar
  48. Wasserman, M., 1954, Cytological studies on the repleta group. Univ. Tex. Pubis 5422:130–152.Google Scholar
  49. Wasserman, M., 1962, Cytological studies of the repleta group of the genus Drosophila, V. The mulleri subgroup, Univ. Tex. Pubis 6205:85–118.Google Scholar
  50. Wasserman, M., 1982a, Evolution in the repleta group, in: The Genetics and Biology of Drosophila, vol. 3b (M. Ashburner, H. L. Carson, J. N. Thompson, eds), Academic Press, London, pp. 61–140.Google Scholar
  51. Wasserman, M., 1982b, Cytological evolution in the Drosophila repleta species group, in: Ecological Genetics and Evolution: The Cactus-Yeast -Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 49–64.Google Scholar
  52. Wasserman, M., 1990, Cytological evolution of the Drosophila repleta species group, in: Inversion Polymorphism in Drosophila (J. R. Powell, and C. B. Krimbas, eds), C.R.C. Press, Boca Raton, Fla. (in press).Google Scholar
  53. Wasserman, M., and Koepfer, H. R., 1977, Phylogenetic relationships among Drosophila longicornis, Drosophila propachuca and Drosophila pachuca, a triad of sibling species, Genetics 87:557–568.PubMedGoogle Scholar
  54. Wasserman, M., and Koepfer, H. R., 1979, Cytogenetics of the South American Drosophila mulleri complex: the martensis cluster. More interspecific sharing of inversions, Genetics 93:935–946.PubMedGoogle Scholar
  55. Webb, S. D., 1978, A history of savanna vertebrates in the new world. Part II: South America and the great interchange, Annu. Rev. Ecol. & Syst. 9:393–426.CrossRefGoogle Scholar
  56. Wright, S., 1965, The interpretation of population structure by F- statistics with special regard to systems of mating, Evolution 19:395–420.CrossRefGoogle Scholar
  57. Wright, S., 1978, Evolution and the Genetics of Populations, vol. 4: Vari-ability within and among natural populations, Univ. Chicago Press, Chicago.Google Scholar
  58. Zouros, E., 1973, Genic differentiation associated with the early stages of speciation in the mulleri subgroup of Drosophila, Evolution 27:601–621.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • W. B. Heed
    • 1
  • A. Sánchez
    • 2
  • R. Armengol
    • 2
  • A. Fontdevila
    • 2
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA
  2. 2.Departament di Genética i de MicrobiologiaUniversitat Antónoma de BarcelonaBellaterra-BarcelonaSpain

Personalised recommendations