Gene and Genome Structure in Diptera: Comparative Molecular Analysis of an Eye Colour Gene in Three Species

  • Abigail Elizur
  • Ygal Haupt
  • Richard G. Tearle
  • Antony J. Howells
Part of the Monographs in Evolutionary Biology book series (MEBI)


Drosophila melanogaster and Drosophila buzzatii belong to the same family (Drosophilidae) within Order Diptera but to different species groups, which are thought to have diverged about 50–60 MY ago; the sheep blowfly (Lucilia cuprina), however, belongs to a different family (Calliphoridae), which is thought to have diverged from Drosophilidae at least 100 MY ago (Beverley and Wilson, 1984). We have been analyzing the similarities and differences in gene and genome organization at the molecular level between these species using eye colour genes as our model system.


Codon Usage Drosophila Species HindIII Site Genomic Southern Blot XbaI Fragment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bender, W., Spierer, P., and Hogness, D. S., 1983, Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in D. melanogaster, J. molec. Biol. 168:17–33.CrossRefGoogle Scholar
  2. Beverley, S. M., and Wilson, A. C., 1984, Molecular evolution in Drosophila and Higher Diptera II. A time scale for fly evolution, J. Mol. Evol. 21:1–13.PubMedCrossRefGoogle Scholar
  3. Bier, K., and Muller, W., 1969, DNS-Messungen bei Insekten und eine Hypothese uber retartiderte Evolution und besonderen DNS-Reichtum im Tierreich, Biol. Zbl. 88:425–449.Google Scholar
  4. Bodmer, M., and Ashburner, M., 1984, Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila, Nature, Lond. 309:425–430.CrossRefGoogle Scholar
  5. Coen, E. S., Thoday, J. M., and Dover, G., 1982, Rate of turnover of structural variants in the rDNA family of Drosophila melanogaster, Nature, Lond. 295:564–568.CrossRefGoogle Scholar
  6. Crain, W. R., Davidson, E. H., and Britten, R. J., 1976, Contrasting patterns of DNA sequence arrangement in Apis mellifera (Honeybee) and Musca domes tica (Housefly), Chromosoma 59:1–12.PubMedCrossRefGoogle Scholar
  7. Daniels, G. R., and Deininger, P. L., 1985, Integration site preferences of the Alu family and similar repetitive DNA sequences, Nucl. Acids Res. 13:8939–8954.PubMedCrossRefGoogle Scholar
  8. Dreesen, T. D., Johnson, D. H., and Henikoff, S., 1988, The brown protein of Drosophila melanogaster is similar to the white protein and to components of active transport complexes, Mol. Cell. Biol. 8:5206–5215.PubMedGoogle Scholar
  9. Efstradiatis, A., Crain, W. R., Britten, R. J., and Davidson, E. H., 1976, DNA sequence organization in the lepidopteran Antheraea pernyi, Proc. natn. Acad. Sci. USA 73:2289–2293.CrossRefGoogle Scholar
  10. Epplen, J. T., McCarrey, J. R., Sutou, S., and Ohno, S., 1982, Base sequence of a cloned snake W-chromosome fragment and identification of a male-specific putative mRNA in the mouse, Proc. natn. Acad. Sci. USA 79:3798–3802.CrossRefGoogle Scholar
  11. Frischauf, A. M., Lehrach, H., Poustaka, A., and Murray, N., 1983, Lambda replacement vectors carrying polylinker sequences, J. molec. Biol. 170:827–842.PubMedCrossRefGoogle Scholar
  12. Holm, L., 1986, Codon usage and gene expression, Nucl. Acids Res. 14:3075–3087.PubMedCrossRefGoogle Scholar
  13. Jeffreys, A. J., Wilson, V., and Thein, S. L., 1985, Hypervariable “minisatellite” regions in human DNA, Nature, Lond. 317:67–73.CrossRefGoogle Scholar
  14. Jones, K. W., 1983, Evolutionary conservation of sex specific DNA sequences, Diffrentiation 23(S):S56-S59.Google Scholar
  15. Kirchhoff, C., 1988, GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Callhoridae), Chromsom 96:107–111.CrossRefGoogle Scholar
  16. Kreitman, M., 1983, Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila mlanogaster, Nature, Lond. 304:412–417.CrossRefGoogle Scholar
  17. Lehrman, M. A., Goldstein, J. L., Russell, D. W., and Brown, M. S., 1987a, Duplication of seven exons in LDL receptor gene caused by Alu-Alu recombination in a subject with familial hypercholesterolemia, Cell 48:827–835.CrossRefGoogle Scholar
  18. Lehrman, M. A., Russell, D. W., Goldstein, J. L., and Brown, M. S., 1987b, Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia, J. biol. Chem. 262:3354–3361.Google Scholar
  19. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory, New York.Google Scholar
  20. Manning, J. E., Schmid, C. W., and Davidson, N., 1975, Interspersion of repetitive and non-repetitive DNA sequences in the Drosophila melanogaster genome, Cell 4:141–155.PubMedCrossRefGoogle Scholar
  21. Messing, J., 1983, New M13 vectors for cloning, Meth. Enzym. 101:20–78.PubMedCrossRefGoogle Scholar
  22. Miklos, G. L. G., Healy, M. J., Pain, P., Howells, A. J., and Russell, R. J., 1984, Molecular and genetic studies on the euchromatin-heterochromatin transition region of the X chromosome of Drosophila melanogaster: I. A cloned entry point near to the uncoordinated locus, Chromosoma 89:218–227.PubMedCrossRefGoogle Scholar
  23. Mount, S. M., 1982, A catalogue of splice junction sequences, Nucl. Acids Res. 10:459–472.PubMedCrossRefGoogle Scholar
  24. Mount, S. M., 1987, Sequence similarity, Nature, Lond. 325:487.CrossRefGoogle Scholar
  25. Musti, A. M., Sobieski, D. A., Chen, B. B., and Eden, F. C., 1981, Repeated deoxyribonucleic acid clusters in the chicken genome contain homologous sequence elements in scrambled order, Biochemistry 20:2989–2999.CrossRefGoogle Scholar
  26. Nanda, I., Neitzel, H., Sperling, K., Studer, R., and Epplen, J. T., 1988, Simple GAT/CA repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae), Chromosoma 96:213–219.PubMedCrossRefGoogle Scholar
  27. Newgard, C. B., Nakano, K., Hwang, P. K., and Fletterick, R. J., 1986, Sequence analysis of the cDNA encoding human liver glycogen Phosphorylase reveals tissue-specific codon usage, Proc. natn. Acad. Sci. USA 83:8132–8136.CrossRefGoogle Scholar
  28. Nicholls, R. D., Fischel-Ghodsian, N., and Higgs, D. R., 1987, Recombination at the human a-globin gene cluster: sequence features and topological constraints, Cell 49:369–378.PubMedCrossRefGoogle Scholar
  29. O’Connell, P., and Rosbash, M., 1984, Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene, Nucl. Acids Res. 12:5495–5513.PubMedCrossRefGoogle Scholar
  30. O’Hare, K., Murphy, C., Levis, R., and Rubin, G. M., 1984, DNA sequence of the white locus of Drosophila melanogaster, J. molec. Biol. 180:437–455.CrossRefGoogle Scholar
  31. Peoples, O. P., Whittaker, P. A., Pearston, D., and Hardman, N., 1985, Structural organization of a hypermethylated nuclear DNA component in Physarum polycephalurn, J. gen. Microbiol. 131:1157–1165.Google Scholar
  32. Reed, K. C., and Mann, D., 1985, Rapid transfer of DNA from agarose gels to nylon membranes, Nucl. Acids Res. 13:72–7221.CrossRefGoogle Scholar
  33. Rocher-Chambonnet, C., Berreur, P., Houde, M., Tiveron, M. C., Lepesant, J. A., and Bregegere, F., 1987, Cloning and partial characterization of the xanthine dehydrogenase gene of Calliphora vicinam a distant relative of Drosophila melanogaster, Gene 59:201–212.Google Scholar
  34. Rouyer, F., Simmler, M-C., Page, D. C., and Weissenbach, J., 1987, A sex chromosome rearrangement in a human XX male caused by Alu-Alu recombination, Cell 51:417–425.PubMedCrossRefGoogle Scholar
  35. Sanger, F., Nicklen, S., and Coulsen, A. R, 1977, DNA sequencing with chain-terminating inhibitors, Proc. natn. Acad. Sci. USA 74:5463–5467.CrossRefGoogle Scholar
  36. Sharp, P. M., Tuohy, T. M. F., and Mosurski, K. R., 1986, Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes, Nucl. Acids Res. 14:5125–5143.PubMedCrossRefGoogle Scholar
  37. Singer, M. F., 1982, SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes, Cell 28:433–434.PubMedCrossRefGoogle Scholar
  38. Singh, L., Purdom, I. F., and Jones, K. W., 1980, Conserved sex-chromosome-associated nucleotide sequences in eukaryotes, Cold Spring Harbor Symp. Quant. Biol. 45:805–813.CrossRefGoogle Scholar
  39. Singh, L., and Jones, K. W., 1982, Sex reversal in the mouse (Mus musculus) is caused by a recurrent nonreciprocal crossover involving the X and an aberrant Y chromosome, Cell 28:205–216.PubMedCrossRefGoogle Scholar
  40. Southern, E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. molec. Biol. 98:503–517.PubMedCrossRefGoogle Scholar
  41. Sullivan, D. T., and Sullivan, M. C., 1975, Transport defects as the physiological basis for eye color mutants of Drosophila melanogaster, Biochem. Genet. 13:603–613.CrossRefGoogle Scholar
  42. Sullivan, D. T., Bell, L. A., Paton, D. R., and Sullivan, M. C., 1980, Genetic and functional analysis of tryptophan transport in Malpighian tubules of Drosophila, Biochem. Genet. 18:1109–1130.CrossRefGoogle Scholar
  43. Summers, K. M., and Howells, A. J., 1978, Xanthommatin biosynthesis in wild type and mutant strains of the Australian sheep blowfly, Lucilia cuprina, Biochem. Genet. 16:1153–1163.CrossRefGoogle Scholar
  44. Summers, K. M., and Howells, A. J., 1980, Pteridines in wild type and eye colour mutants of the Australian sheep blowfly Lucilia cuprina, Insect Biochem. 10:151–154.CrossRefGoogle Scholar
  45. Summers, K. M., Howells, A. J., and Pyliotis, N. A., 1982, Biology of eye pigmentation in insects, Adv. Insect Physiol. 16:119–166.CrossRefGoogle Scholar
  46. Tearle, R. G., Belote, J. M., McKeown, M., Baker, B. S., and Howells, A.J., 1989, Cloning and characterization of the scarlet gene of Drosophila melanogaster, Genetics 122:595–606.PubMedGoogle Scholar
  47. Traut, W., 1987, Hypervariable Bkm DNA loci in the moth, Ephestia kuhniella: Does transposition cause restriction fragment length polymorphism (RFLP)? Genetics 115:493–498.PubMedGoogle Scholar
  48. Wensink, P. C., Tabata, S., and Pachl, C., 1979, The clustered and scrambled arrangement of moderately repetitive elements in Drosophila DNA, Cell 18:1231–1246.PubMedCrossRefGoogle Scholar
  49. Zachar, Z., and Bingham, P. M., 1982, Regulation of white locus expression: The structure of mutant alleles at the white locus of Drosophila melanogaster, Cell 30:429–441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Abigail Elizur
    • 1
  • Ygal Haupt
    • 2
  • Richard G. Tearle
    • 1
  • Antony J. Howells
    • 3
  1. 1.Department of BiochemistryUniversity of AdelaideAustralia
  2. 2.Walter and Eliza Hall Institute of Medical ResearchPO Royal Melbourne HospitalVictoriaAustralia
  3. 3.Department of Biochemistry, Faculty of ScienceAustralian National UniversityCanberraAustralia

Personalised recommendations