Advertisement

Insecticide Resistance as a Model System for Studying Molecular Evolution

  • Robyn J. Russell
  • Mira M. Dumancic
  • Geoffrey G. Foster
  • Gaye L. Weller
  • Marion J. Healy
  • John G. Oakeshott
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

Apart from its applied significance, insecticide resistance is an excellent model system for studying the molecular basis of evolutionary change, in particular, the acquisition of a qualitatively different phenotype. It also has the unusual advantage in evolutionary biology that the change has been widespread and rapid enough to be amenable to analysis; approximately 450 species of insects and mites have developed resistance to chemical insecticides over the past forty years (Georghiou, 1986).

Keywords

Insecticide Resistance Musca Domestica Organophosphorus Insecticide Culex Mosquito Lucilia CUPRINA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, J. T. A., and Whitten, M. J., 1976, The genetic basis for organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera, Calliphoridae), Bull. ent. Res. 66:561–568.CrossRefGoogle Scholar
  2. Berge, J. B., and Fournier, D., 1988, Advances in molecular genetics of acetylcholinesterase insensitivity in insecticide — resistant insects, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 461.Google Scholar
  3. Board, P. G., and Webb, G. C., 1987, Isolation of a cDNA clone and localization of human glutathione S-transferase 2 genes to chromosome band 6p12, Proc. natn. Acad. Sci. USA 84:2377–2381.CrossRefGoogle Scholar
  4. Cavener, D. R., Otteson, D. C., and Kaufman, T. C., 1986, A rehabilitation of the genetic map of the 84B-D region in Drosophila melanogaster, Genetics 114:111–123.PubMedGoogle Scholar
  5. Clark, A. G., and Shamaan, N. A., 1984, Evidence that DDT-dehydrochlorinase from the house fly is a glutathione S-transferase, Pestic. Biochem. & Physiol. 22:249–261.CrossRefGoogle Scholar
  6. Clark, A. G., Shamaan, N. A., Dauterman, W. C., and Hayoaka, T., 1984, Characterization of multiple glutathione transferases from the housefly, Musca domestica (L), Pestic. Biochem. & Physiol. 22:51–59.CrossRefGoogle Scholar
  7. Devonshire, A. L., 1977, The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), and its role in conferring insecticide resistance, Biochem. J. 167:675–683.PubMedGoogle Scholar
  8. Devonshire, A. L., 1987, Biochemical studies of organophosphorus and carbamate resistance in house flies and aphids, in: Combating Resistance to Xenobiotics: Biological and Chemical Approaches (M. G. Ford, D. W. Holloman, B. P. S. Khambay, and R. M. Sawicki, eds), Weinheim, VCH, Chichester, Ellis, Horwood, pp. 239–255.Google Scholar
  9. Feyereisen, R., 1988, Isolation and sequence of cDNA clones for cytochrome P-450 from an insecticide-resistant strain of Musca domestica, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 465.Google Scholar
  10. Feyereisen, R., Koener, J. F., Farnsworth, D. E., and Nebert, D. W., 1989, Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica, Proc. natn. Acad. Sci. USA 86: 1465–1469.CrossRefGoogle Scholar
  11. Field, L. M., Devonshire, A. L., and Forde, B. G., 1988, Molecular evidence that insecticide resistance in peach-potato aphids (Myzus persicae Sulz.) results from amplification of an esterase gene, Biochem. J. 251:309–312.PubMedGoogle Scholar
  12. Foster, G. G., Whitten, M. J., Konovalov, C., Arnold, J. T. A., and Maffi, G., 1981, Autosomal genetic maps of the Australian sheep blowfly, Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae), and possible correlations with the linkage maps of Musca domestica L., and Drosophila melanogaster (Mg.), Genet. Res. 37:55–69.CrossRefGoogle Scholar
  13. Franco, M. G., and Oppenoorth, F. J., 1962, Genetical experiments on the gene for low ali-esterase activity and organophosphate resistance in Musca domestica L., Entomol. exp. Appl. 5:119–123.CrossRefGoogle Scholar
  14. Georghiou, G. P., 1986, The magnitude of the resistance problem, in: Pesticide Resistance: Strategies and Tactics for Management, National Academy of Sciences, Washington, D.C., pp. 14–43.Google Scholar
  15. Grubs, R. E., Adams, P. M., and Soderlund, D. M., 1988, Binding of [3H] saxitoxin to head membrane preparations from susceptible and knockdown-resistant house flies, Pestic. Biochem. & Physiol. 32: 217–223.CrossRefGoogle Scholar
  16. Hall, L. M. C., and Spierer, P., 1986, The Ace locus of Drosophila melanogaster: structural gene for acetylcholinesterase with an unusual 5’ leader, EMBO J. 5:2949–2954.PubMedGoogle Scholar
  17. Hama, H., 1983, Resistance to insecticides due to reduced sensitivity of acetylcholinesterase, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 299–331.CrossRefGoogle Scholar
  18. Hoyer, R. F., and Plapp, F. W., 1968, Insecticide resistance in the house fly: identification of a gene that confers resistance to organotin insecticides and acts as an intensifier of parathion resistance, J. econ. Ent. 61:1269 – 1276.Google Scholar
  19. Hughes, P. B., 1982, Organophosphorus resistance in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae): a genetic study incorporating synergists, Bull. ent. Res. 72:573–582.CrossRefGoogle Scholar
  20. Hughes, P. B., and Devonshire, A. L., 1982, The biochemical basis of resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 18:289–297.CrossRefGoogle Scholar
  21. Hughes, P. B., Green, P. E., and Reichmann, K. G., 1984, Specific resistance to malathion in laboratory and field populations of the Australian sheep blowfly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 77:1400–1404.Google Scholar
  22. Hughes, P. B., and Raftos, D. A. 1985, Genetics of an esterase associated with resistance to organophosphorus insecticides in the sheep blowfly, Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae), Bull. ent. Res. 75:535–544.CrossRefGoogle Scholar
  23. Hutson, D. H., and Roberts, T. R., 1985, Insecticides, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), John Wiley and Sons Ltd, New York, pp. 1–34.Google Scholar
  24. Kao, L. R., Motoyama, N., and Dauterman, W. C., 1984, Studies on hydrolases in various house fly strains and their role in malathion resistance, Pestic. Biochem. & Physiol, 22:86–92.CrossRefGoogle Scholar
  25. Kasbekar, D. P., and Hall, L. M., 1988, A Drosophila mutation that reduces sodium channel number confers resistance to pyrethroid insecticides, PestiC., Biochem, & Physiol. 32:135–145.CrossRefGoogle Scholar
  26. Lund, A. E., 1984, Pyrethroid modification of sodium channel: current concepts, PestiC., Biochem. & Physiol, 22:161–168.CrossRefGoogle Scholar
  27. McKenzie, J.A., and Game, A.Y., 1987, Diazinon resistance in Lucilia cuprina; mapping of a fitness modifier, Heredity 59:371–381.CrossRefGoogle Scholar
  28. McKenzie, J. A., Dearn, J. M., and Whitten, M. J., 1980, Genetic basis of resistance to diazinon in Victorian populations of the Australian sheep blow fly, Lucilia cuprina, Aust. J. biol. Sci. 33:85–95.PubMedGoogle Scholar
  29. Motoyama, N., and Dauterman, W. C., 1980, Glutathione S — transferases: their role in the metabolism of organophosphorus insecticides, Rev. Biochem, Toxicol, 2: 49–69.Google Scholar
  30. Motoyama, N., Dauterman, W. C., and Plapp, F. W., 1977, Genetic studies on glutathione-dependent reactions in resistant strains of the house fly, Musca domestica L., PestiC., Biochem, & Physiol, 7:443–450.CrossRefGoogle Scholar
  31. Motoyama, N., Hayaoka, T., Nomura, K., and Dauterman, W. C., 1980, Multiple factors for organophosphorus resistance in the housefly, Musca domestica L., J. Pesticide Sci. (Noyaku Kagaku Kenkyukai) 5:393–402.CrossRefGoogle Scholar
  32. Mouches, C., Pasteur, N., Berge, J. B., Hyrien, O., Raymond, M., De Saint Vincent, B. R., De Silvestri, M., and Georghiou, G. P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778–780.PubMedCrossRefGoogle Scholar
  33. Mouches, C., Magnin, M., Berge, J. B., De Silvestri, M., Beyssat, V., Pasteur, N., and Georghiou G. P., 1987, Overproduction of detoxifying esterases in organophosphate resistant Culex mosquitoes and their presence in other insects, Proc. natn, Acad. Sci. USA 84:2113–2116.CrossRefGoogle Scholar
  34. Mouches, C., Pasteur, N., Lemieux, L., Poplin, Y., Abadon, M., and Georghiou, G. P., 1988, Advances in molecular genetics of organophosphate — detoxifying esterases in insects, Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.Google Scholar
  35. Myers, M., Richmond, R. C., and Oakeshott, J. G., 1988, On the origin of esterases, Mol. Biol. Evol. 5:113–119.PubMedGoogle Scholar
  36. Nakatsugawa, T., and Morelli, M. A., 1976, Microsomal oxidation and insecticide metabolism, in: Insecticide Biochemistry and Physiology (C. F. Wilkinson, ed.), Plenum, New York, pp. 61–114.Google Scholar
  37. Narahashi, T., 1983, Resistance to insecticides due to reduced sensitivity of the nervous system, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 333–352.CrossRefGoogle Scholar
  38. Ogita, Z., 1958, The genetical relation between resistance to insecticides in general and that to phenylthiourea (PTU) and phenylurea (PU) in Drosophila melanogaster, Botyu-kagaku 23:188–205.Google Scholar
  39. Ogita, Z., and Kasai, T., 1965, Genetic control of multiple esterases in Musca domestica, Jap. J. Genet. 40:1–14.CrossRefGoogle Scholar
  40. Oppenoorth, F. J., 1985, Biochemistry and genetics of insecticide resistance, in: Comprehensive Insect Physiology, Biochemistry and Pharmacology, vol. 12, Insect Control (G. A. Kerkut, and L. I. Gilbert, eds), Pergamon, London, pp. 731–770.Google Scholar
  41. Oppenoorth, F. J., and Van Asperen, K., 1960, Allelic genes in the house fly producing modified enzymes that cause organophosphate resistance, Science 132:298–299.PubMedCrossRefGoogle Scholar
  42. Ottea, J. A., and Plapp, F. W., 1981, Induction of glutathione S. aryl transferase by phenobarbital in the house fly, Pestic. Biochem. & Physiol. 15:10–13.CrossRefGoogle Scholar
  43. Pauron, D., Barhanin, J., Amichot, M., Pralavorio, M., Berge, J. B., and Lazdunski, M., 1989, Pyrethroid receptor in the insect Na+ channel: alteration of its properties in pyrethroid-resistant flies, Biochemistry 28: 1673–1677.CrossRefGoogle Scholar
  44. Pickett, C. B., Telakowski-Hopkins, C. A., Ding, G. J.-F., Argenbright, L., and Lu, A. Y. H., 1984, Rat liver glutathione S-transferases. Complete nucleotide sequence of a glutathione S-transferase mRNA and the regulation of the Ya, Yb, and Yc mRNAs by 3-methylcholanthrene and phenobarbital, J. biol. Chem. 259:5182–5188.PubMedGoogle Scholar
  45. Picollo de Villar, M. I., Van Der Pas, L. J. T., Swissaert, H. R., and Oppenoorth, F. J., 1983, An unusual type of malathion-carboxylesterase in a Japanese strain of house fly, Pestic. Biochem. & Physiol. 19:60–65.CrossRefGoogle Scholar
  46. Plapp, F. W., 1988, Major role for a regulatory gene in metabolic resistance to insecticides in the house fly Musca domestica L. (Diptera: Muscidae), Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.Google Scholar
  47. Plapp, F. W., and Wang, T. C., 1983, Genetic origins of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 47–70.CrossRefGoogle Scholar
  48. Raftos, D. A., 1986, The biochemical basis of malathion resistance in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 26:302–309.CrossRefGoogle Scholar
  49. Raftos, D. A., and Hughes, P. B., 1986, Genetic basis of a specific resistance to malathion in the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 79:553–557.Google Scholar
  50. Rossignol, D. P., 1988, Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies, Pestic. Biochem. & Physiol. 32:146–152.CrossRefGoogle Scholar
  51. Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.CrossRefGoogle Scholar
  52. Sattelle, D. B., Leech, C. A., Lummis, S. C. R., Harrison, B. J., Robinson, H. P. C., Moores, G. D., and Devonshire, A. L., 1988, Ion channel properties of insects susceptible and resistant to insecticides, in: Neurotox ‘88:Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 563–582.Google Scholar
  53. Sawicki, R. W., 1985, Resistance to pyrethroid insecticides in arthropods, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), Wiley, New York, pp. 143–192.Google Scholar
  54. Sawicki, R. M., and Farnham, A. W., 1968a, Genetics of resistance to insecticides of the SKA strain of Musca domestica III. Location and isolation of the factors of resistance to dieldrin, Entomol. exp. Appl. 11:133–142.CrossRefGoogle Scholar
  55. Sawicki, R. M., and Farnham, A. W., 1968b, Examination of the isolated autosomes of the SKA strain of house flies (Musca domestica L) for resistance to several insecticides with and without pretreatment with sesamex and TBTP, Bull. ent. Res. 59:409–421.CrossRefGoogle Scholar
  56. Sawicki, R. M., Devonshire, A. L., Farnham, A. W., O’Dell, K. E., Moores, G. D., and Denholm, I., 1984, Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). II. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids, Bull. ent. Res. 74:197–206.CrossRefGoogle Scholar
  57. Soderlund, D. M., and Bloomquist, J. R., Molecular mechanisms of insecticide resistance, in: Pesticide Resistance in Arthropods (R. T. Roush, and B. E. Tabashnik, eds), Chapman and Hall, New York, (in press).Google Scholar
  58. Telakowski-Hopkins, C. A., Rodkey, J. A., Bennet, C. D., Lu, A. Y. H., and Pickett, C. B., 1985, Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, J. biol. Chem. 260:5820–5825.Google Scholar
  59. Terras, M. A., Rose, H. A., and Hughes, P. B., 1983, Aldrin epoxidase activity in larvae of a susceptible and a resistant strain of the sheep blowfly, Lucila cuprina (Wiedemann), J. Aust. Entomol. Soc. 22:256.CrossRefGoogle Scholar
  60. Triantanphyllidis, C. D., and Christodoulou, C., 1973, Studies of a homologous gene-enzyme system, Esterase C., in Drosophila melanogaster and Drosophila simulans, Biochem. Genet. 8:383–390.Google Scholar
  61. Tsukamoto, M., 1983, Methods of genetic analysis of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 71–98.CrossRefGoogle Scholar
  62. Van Asperen, K., 1962, A study of house fly esterases by means of a sensitive colorimetric method, J. Insect Physiol. 8:401–416.CrossRefGoogle Scholar
  63. Van Asperen, K., and Oppenoorth, F. J., 1959, Organophosphate resistance and esterase activity in house flies, Entomol. exp. Appl., 2:48–57.CrossRefGoogle Scholar
  64. Waters, L. C., and Nix, C. E., 1988, Regulation of insecticide resistance — related cytochrome P-450 expression in Drosophila melanogaster, Pestic. Biochem. & Physiol. 30:214–227.CrossRefGoogle Scholar
  65. Wood, E. J., De Villar, M. I. P., and Zerba, E. N., 1985, Role of a microsomal carboxylesterase in reducing the action of malathion in eggs of Triatoma infestans, Pestic. Biochem. & Physiol. 23:24–32.Google Scholar
  66. Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. natn. Acad. Sci. USA 75:4047–4051.CrossRefGoogle Scholar
  67. Yamamoto, D., Quandt, F. N., and Narahashi, T., 1983, Modification of single sodium channels by the insecticide tetramethrin, Brain Res. 274:344–349.PubMedCrossRefGoogle Scholar
  68. Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K., 1987, General esterase, malathion carboxylesterase, and malathion resistance in Culex tarsalis, Pestic. Biochem. & Physiol. 28:279–285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Robyn J. Russell
    • 1
  • Mira M. Dumancic
    • 1
  • Geoffrey G. Foster
    • 1
  • Gaye L. Weller
    • 1
  • Marion J. Healy
    • 1
  • John G. Oakeshott
    • 1
  1. 1.CSIRO Division of EntomologyCanberraAustralia

Personalised recommendations