Advertisement

Physiology, Biochemistry and Molecular Biology of the Est-6 Locus in Drosophila melanogaster

  • Rollin C. Richmond
  • Karen M. Nielsen
  • James P. Brady
  • Elizabeth M. Snella
Part of the Monographs in Evolutionary Biology book series (MEBI)

Abstract

An understanding of the effect of natural selection on a particular locus often depends upon a detailed knowledge of the function of the locus. Indeed, a mechanistic understanding of the biochemical and physiological role(s) of a gene product can reveal complexities which are vital to a full comprehension of the myriad effects of selection. This view is well expressed in the following quotation from Watt (1985, p. 124) which has its origins in a research strategy advocated by Clarke (1975) and Koehn (1978).

Keywords

Null Allele Male Reproductive System Male Reproductive Tract Serine Hydrolase Bovine Casein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldridge, W. N., and Reiner, E., 1972, Enzyme Inhibitors as Substrates, North-Holland Publishing Co., Amsterdam.Google Scholar
  2. Anderson, P. R., and Oakeshott, J. G., 1984, Parallel geographic patterns of allozymic variation in two sibling Drosophila species, Nature, Lond. 308:729–731.CrossRefGoogle Scholar
  3. Bairati, A., 1968, Structure, and ultrastructure of the male reproductive system in Drosophila melanogaster Meig. 2. The genital duct and accessory glands, Monitore zool. ital. 2:105–182.Google Scholar
  4. Bell, J. B., MacIntyre, R. J., and Olivieri, A. P., 1972, Induction of null-activity mutants for the acid phosphatase-1 gene of Drosophila melanogaster, Biochem. Genet. 6:205–216.PubMedCrossRefGoogle Scholar
  5. Birley, A. J., and Beardmore, J. A., 1977, Genetical composition, temperature, density and selection in an enzyme polymorphism, Heredity 39:133–144.PubMedCrossRefGoogle Scholar
  6. Brady, J. P., Richmond, R. C., and Oakeshott, J. G., 1990, Cloning of the esterase-5 locus from Drosophila pseudoobscura and molecular analysis of interspecific evolutionary changes at this locus, Evolution (submitted).Google Scholar
  7. Cavener, D. R., and Clegg, M. T., 1981, Temporal stability of allozyme frequencies in a natural population of Drosophila melanogaster, Genetics 98:613–623.PubMedGoogle Scholar
  8. Clarke, B., 1975, The contribution of ecological genetics to evolutionary theory: Detecting the direct effects of natural selection on particular loci, Genetics (Suppl.) 79:101–113.PubMedGoogle Scholar
  9. Collet, C., Nielsen, K. M., Russell, R. J., Karl, M. J., Oakeshott, J. G., and Richmond, R. C., 1990, Molecular analysis of duplicated esterase genes in Drosophila melanogaster, Mol. Biol. Evol. (in press).Google Scholar
  10. Cooke, P. H., and Oakeshott, J. G., 1989, Amino acid polymorphisms for esterase-6 in Drosophila melanogaster, Proc. natn. Acad. Sci. USA 86:1426–1430.CrossRefGoogle Scholar
  11. Franklin, I. R., 1981, An analysis of temporal variation at isozyme loci in Drosophila melanogaster, in: Genetic Studies of Drosophila Populations (J. B. Gibson, and J. G. Oakeshott, eds), Australian National University Press, Canberra, pp. 217–236.Google Scholar
  12. Gilbert, D. G., 1981, Function and adaptive significance of esterase 6 allozymes in Drosophila melanogaster reproduction, Ph.D. Dissertation, Indiana University, Bloomington, Indiana.Google Scholar
  13. Gilbert, D. G., and Richmond, R. C., 1982a, Esterase 6 in Drosophila melanogaster: Reproductive function of active and null alleles at low temperature, Proc. natn. Acad. Sci. USA 79:2962–2966.CrossRefGoogle Scholar
  14. Gilbert, D. G., and Richmond, R. C., 1982b, Studies of esterase 6 in Drosophila melanogaster. XII. Evidence for temperature selection of Est 6 and Adh alleles, Genetica 58:109–119.CrossRefGoogle Scholar
  15. Gilbert, D. G., Richmond, R. C., and Sheehan, K. B., 1981a, Studies of esterase 6 in Drosophila melanogaster. V. Progeny production and sperm use in females inseminated by males carrying active or null alleles, Evolution 35:21–37.CrossRefGoogle Scholar
  16. Gilbert, D. G., Richmond, R. C., and Sheehan, K. B., 1981b, Studies of esterase 6 in Drosophila melanogaster. VII. The timing of remating in females inseminated by males having active or null alleles, Behav. Genet. 11:195–208.PubMedCrossRefGoogle Scholar
  17. Hafen, E., and Levine, M., 1986, The localization of RNAs in Drosophila tissue sections by in situ hybridization, in: Drosophila A Practical Approach (D. B. Roberts, ed.), IRL Press, Oxford, pp. 139–174.Google Scholar
  18. Hartl, D., 1973, The mechanism of a brooding effect associated with segregation distortion in Drosophila melanogaster, Genetics 74:619–631.PubMedGoogle Scholar
  19. Heyman, E., 1980, Carboxylesterases and amidases, in: Enzymatic Basis of Detoxification, Vol.2 (W. Jakoby, ed.), Academic Press, New York, pp. 291–323.Google Scholar
  20. Hudson, R. R., Kreitman, M., and Aguadé, M., 1987, A test of neutral molecular evolution based on nucleotide data, Genetics 116:153–159.PubMedGoogle Scholar
  21. Iyengar, S. V., and Baker, R. M., 1962, The influence of temperature on the pattern of insemination by Drosophila males, Genetics 47:963–964.Google Scholar
  22. Johnson, F. M., Wallis, B. B., and Dennison, C., 1966, Recessive esterase deficiencies controlled by alleles of Est C and Est 6 in Drosophila melanogaster, Drosoph. Inf. Serv. 41:159.Google Scholar
  23. Kambysellis, M. P., 1984, A highly efficient method for collection of hemolymph, hemocytes, or blood-borne organisms from Drosophila and other small insects, Drosoph. Inf. Serv. 60: 219–220.Google Scholar
  24. Koehn, R. K., 1978, Physiology and biochemistry of enzyme variation: The interface of ecology and population genetics, in: Ecological Genetics: The Interface (P.F. Brussard, ed.), Springer-Verlag, New York, pp. 51–72.CrossRefGoogle Scholar
  25. Kojima, K-I., and Huang, S. L., 1972, Effects of population density on the frequency-dependent selection in the esterase-6 locus of Drosophila melanogaster, Evolution 26:313–321.CrossRefGoogle Scholar
  26. Langley, C. H., Voelker, A. J., Leigh-Brown, A., and Ohnishi, S., 1981, Null allele frequencies at allozyme loci in natural populations of Drosophila melanogaster, Genetics 99:151 – 156.PubMedGoogle Scholar
  27. Lewontin, R. C., 1985, Population genetics, A. Rev. Genet. 19:81–102.CrossRefGoogle Scholar
  28. MacIntyre, R. J., and Wright, T. R. F., 1966, Response of esterase-6 alleles of Drosophila melanogaster and D. simulans to selection in experimental populations, Genetics 53:371–387.PubMedGoogle Scholar
  29. Mane, S. D., Tepper, C. S., and Richmond, R. C., 1983, Purification and characterization of esterase 6, a polymorphic carboxylesterase of Drosophi1a melanogaster, Biochem. Genet.21:1019–1040.PubMedCrossRefGoogle Scholar
  30. Manning, A., 1959, The sexual behavior of two sibling Drosophila species, Behaviour 15:123–145.CrossRefGoogle Scholar
  31. Meikle, D., Sheehan, K., Phillis, D., and Richmond, R. C., 1990, Studies of esterase 6 in Drosophila melanogaster. XIX. Localization and longevity of male derived enzyme in female hemolymph, J. Insect Physiol. (submitted).Google Scholar
  32. Mouches, C., Pasteur, N., Berge, J., Hyrien, O., Raymond, M., de Saint Vincent, B. R., de Silvestri, M., and Georghiou, G. P., 1986, Amplification of an esterase gene is responsible for insecticide resistance in a California Culex mosquito, Science 233:778–780.PubMedCrossRefGoogle Scholar
  33. Myers, M., Richmond, R. C., and Oakeshott, J. G., 1988, On the origins of esterases, Mol. Biol. Evol. 5:113–119.PubMedGoogle Scholar
  34. Oakeshott, J. G., Collet, C., Phillis, R. W., Nielson, K. M., Russell, R. J., Chambers, G. K., Ross, V., and Richmond, R. C., 1987, Molecular cloning and characterization of esterase 6, a serine hydrolase of Drosophila, Proc. natn. Acad. Sci. USA 84:3359–3363.CrossRefGoogle Scholar
  35. Oakeshott, J. G., Chambers, G. K., Gibson, J. B., and Willcocks, D. A., 1981, Latitudinal relationships of esterase 6 and phosphoglucomutase gene frequencies in Drosophila melanogaster, Heredity 47:385–396.PubMedCrossRefGoogle Scholar
  36. Oakeshott, J. G., Wilson, S. R., and Knibb, W. R., 1988, Selection affecting enzyme polymorphisms in enclosed Drosophila populations maintained in a natural environment, Proc. natn. Acad. Sci. USA 85:293–297.CrossRefGoogle Scholar
  37. Parsons, P., 1973, Behavioral and Ecological Genetics, Oxford University Press, London.Google Scholar
  38. Peters, J., 1982, Nonspecific esterases of Mus musculus, Biochem. Genet. 20:585–606.PubMedCrossRefGoogle Scholar
  39. Richards, A. G., 1963, The rate of sperm locomotion in the cockroach as a function of temperature, J. Insect Physiol. 9:545–549.CrossRefGoogle Scholar
  40. Richmond, R. C., 1972, Enzyme variability in the Drosophila willistoni group. III. Amounts of variability in the superspecies, D. paulistorum, Genetics 70:87–112.PubMedGoogle Scholar
  41. Richmond, R. C., and Senior, A., 1981, Esterase 6 of Drosophila melanogaster: Kinetics of transfer to females, decay in females and male recovery, J. Insect Physiol. 27:849–853.CrossRefGoogle Scholar
  42. Richmond, R. C., Gilbert, D. G., Sheehan, K. B., Gromko, M. H., and Butterworth, F. M., 1980, Esterase 6 and reproduction in Drosophila melanogaster, Science 207:1483–1485.PubMedCrossRefGoogle Scholar
  43. Riley, M. A., 1989, Nucleotide sequence of the Xdh region in Drosophila pseudoobscura and an analysis of the evolution of synonymous codons, Mol. Biol. Evol. 6:33–52.PubMedGoogle Scholar
  44. Scott, D., 1986, Inhibition of female Drosophila melanogaster remating by a seminal fluid protein (esterase 6), Evolution 40:1084–1091.CrossRefGoogle Scholar
  45. Sheehan, K., Richmond, R. C., and Cochrane, B. J., 1979, Studies of esterase 6 in Drosophila melanogaster. III. The developmental pattern and tissue distribution, Insect Biochem. 9:443–450.CrossRefGoogle Scholar
  46. Simmons, G. M., Kreitman, M. E., Quattlebaum, W. F., and Miyashita, M., 1989, Molecular analysis of alleles of alcohol dehydrogenase along a cline in Drosophila melanogaster. I. Main, North Carolina, and Florida, Evolution 43:393–409.CrossRefGoogle Scholar
  47. Stein, S. P., Tepper, C. S., Able, N. D., and Richmond, R. C., 1984, Studies of esterase 6 in Drosophila melanogaster. XVI. Synthesis occurs in the male reproductive tract (anterior ejaculatory duct) and is modulated by juvenile hormone, Insect Biochem. 14:527–532.CrossRefGoogle Scholar
  48. Tepper, C. S., Richmond, R. C., Terry, A. L., and Senior, A., 1982, Esterase 6 in Drosophila melanogaster: Modification of Esterase 6 activity by unlinked genes, Genet. Res. 40:109–125.CrossRefGoogle Scholar
  49. Terranova, A. C., Leopold, R. A., Degrugillier, M. E., and Johnson, J. R., 1972, Electrophoresis of the male accessory secretion and its fate in the mated female, J. Insect. Physiol. 18:1573–1591.PubMedCrossRefGoogle Scholar
  50. Van der Meer, R., Obin, M., Sheehan, K. S., Zawistowski, S., and Richmond, R., 1986, A reevaluation of the role of cis-vaccenyl acetate, cis vaccenyl alcohol and esterase 6 in the regulation of mated female sexual attractiveness in Drosophila melanogaster, J. Insect Physiol. 32:681–686.CrossRefGoogle Scholar
  51. Voelker, R. A., Langley, C. H., Leigh-Brown, A. J., Ohnishi, S., Dickson, B., Montgomery, E., and Smith, S. C., 1980, Enzyme null alleles in natural populations of Drosophila melanogaster: Frequencies in a North Carolina population, Proc. natn. Acad. Sci. USA 77:1091–1095.CrossRefGoogle Scholar
  52. Watt, W., 1985, Allelic isozymes and the mechanistic study of evolution, Isozymes. Current Topics in Biological & Medical Research 12:89–132.Google Scholar
  53. White, M. W., Mane, S. D., and Richmond, R. C., 1988, Studies of esterase-6 in Drosophila melanogaster. XVIII. Characterization of the slow and fast allozymes, Mol. Biol. Evol. 5:41–62.PubMedGoogle Scholar
  54. Wright, T. R. F., 1963, The genetics of an esterase in Drosophila melanogaster, Genetics 48:787–801.PubMedGoogle Scholar
  55. Yamazaki, T., 1971, Measurement of fitness at the Est-5 locus in Drosophila pseudoobscura, Genetics 67:579–603.PubMedGoogle Scholar
  56. Plapp, F. W., 1988, Major role for a regulatory gene in metabolic resistance to insecticides in the house fly Musca domestica L. (Diptera: Muscidae), Abstract, XVIII International Congress of Entomology, Vancouver, July 3–9, p. 460.Google Scholar
  57. Plapp, F. W., and Wang, T. C., 1983, Genetic origins of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 47–70.CrossRefGoogle Scholar
  58. Raftos, D. A., 1986, The biochemical basis of malathion resistance in the sheep blowfly, Lucilia cuprina, Pestic. Biochem. & Physiol. 26:302–309.CrossRefGoogle Scholar
  59. Raftos, D. A., and Hughes, P. B., 1986, Genetic basis of a specific resistance to malathion in the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae), J. econ. Ent. 79:553–557.Google Scholar
  60. Rossignol, D. P., 1988, Reduction in number of nerve membrane sodium channels in pyrethroid resistant house flies, Pestic. Biochem. & Physiol. 32:146–152.CrossRefGoogle Scholar
  61. Roush, R. T., and McKenzie, J. A., 1987, Ecological genetics of insecticide and acaricide resistance, A. Rev. Ent. 32:361–380.CrossRefGoogle Scholar
  62. Sattelle, D. B., Leech, C. A., Lummis, S. C. R., Harrison, B. J., Robinson, H. P. C., Moores, G. D., and Devonshire, A. L., 1988, Ion channel properties of insects susceptible and resistant to insecticides, in: Neurotox ‘88:Molecular Basis of Drug and Pesticide Action (G. G. Lunt, ed.), Elsevier, Amsterdam, pp. 563–582.Google Scholar
  63. Sawicki, R. W., 1985, Resistance to pyrethroid insecticides in arthropods, in: Insecticides (D. H. Hutson, and T. R. Roberts, eds), Wiley, New York, pp. 143–192.Google Scholar
  64. Sawicki, R. M., and Farnham, A. W., 1968a, Genetics of resistance to insecticides of the SKA strain of Musca domestica III. Location and isolation of the factors of resistance to dieldrin, Entomol. exp. Appl. 11:133–142.CrossRefGoogle Scholar
  65. Sawicki, R. M., and Farnham, A. W., 1968b, Examination of the isolated autosomes of the SKA strain of house flies (Musca domestica L) for resistance to several insecticides with and without pretreatment with sesamex and TBTP, Bull. ent. Res. 59:409–421.CrossRefGoogle Scholar
  66. Sawicki, R. M., Devonshire, A. L., Farnham, A. W., O’Dell, K. E., Moores, G. D., and Denholm, I., 1984, Factors affecting resistance to insecticides in house-flies, Musca domestica L. (Diptera: Muscidae). II. Close linkage on autosome 2 between an esterase and resistance to trichlorphon and pyrethroids, Bull. ent. Res. 74:197–206.CrossRefGoogle Scholar
  67. Soderlund, D. M., and Bloomquist, J. R., Molecular mechanisms of insecticide resistance, in: Pesticide Resistance in Arthropods (R. T. Roush, and B. E. Tabashnik, eds), Chapman and Hall, New York, (in press).Google Scholar
  68. Telakowski-Hopkins, C. A., Rodkey, J. A., Bennet, C. D., Lu, A. Y. H., and Pickett, C. B., 1985, Rat liver glutathione S-transferases. Construction of a cDNA clone complementary to a Yc mRNA and prediction of the complete amino acid sequence of a Yc subunit, J. biol. Chem. 260:5820–5825.Google Scholar
  69. Terras, M. A., Rose, H. A., and Hughes, P. B., 1983, Aldrin epoxidase activity in larvae of a susceptible and a resistant strain of the sheep blowfly, Lucila cuprina (Wiedemann), J. Aust. Entomol. Soc. 22:256.CrossRefGoogle Scholar
  70. Triantanphyllidis, C. D., and Christodoulou, C., 1973, Studies of a homologous gene-enzyme system, Esterase C., in Drosophila melanogaster and Drosophila simulans, Biochem. Genet. 8:383–390.Google Scholar
  71. Tsukamoto, M., 1983, Methods of genetic analysis of insecticide resistance, in: Pest Resistance to Pesticides (G. P. Georghiou, and T. Saito, eds), Plenum, New York, pp. 71–98.CrossRefGoogle Scholar
  72. Van Asperen, K., 1962, A study of house fly esterases by means of a sensitive colorimetric method, J. Insect Physiol. 8:401–416.CrossRefGoogle Scholar
  73. Van Asperen, K., and Oppenoorth, F. J., 1959, Organophosphate resistance and esterase activity in house flies, Entomol. exp. Appl., 2:48–57.CrossRefGoogle Scholar
  74. Waters, L. C., and Nix, C. E., 1988, Regulation of insecticide resistance — related cytochrome P-450 expression in Drosophila melanogaster, Pestic. Biochem. & Physiol. 30:214–227.CrossRefGoogle Scholar
  75. Wood, E. J., De Villar, M. I. P., and Zerba, E. N., 1985, Role of a microsomal carboxylesterase in reducing the action of malathion in eggs of Triatoma infestans, Pestic. Biochem. & Physiol. 23:24–32.Google Scholar
  76. Wu, C.-F., Ganetzky, B., Jan, L. Y., Jan, Y.-N., and Benzer, S., 1978, A Drosophila mutant with a temperature-sensitive block in nerve conduction, Proc. natn. Acad. Sci. USA 75:4047–4051.CrossRefGoogle Scholar
  77. Yamamoto, D., Quandt, F. N., and Narahashi, T., 1983, Modification of single sodium channels by the insecticide tetramethrin, Brain Res. 274:344–349.PubMedCrossRefGoogle Scholar
  78. Ziegler, R., Whyard, S., Downe, A. E. R., Wyatt, G. R., and Walker, V. K., 1987, General esterase, malathion carboxylesterase, and malathion resistance in Culex tarsalis, Pestic. Biochem. & Physiol. 28:279–285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Rollin C. Richmond
    • 1
  • Karen M. Nielsen
    • 1
  • James P. Brady
    • 1
  • Elizabeth M. Snella
    • 1
  1. 1.Department of Biology and Institute for Molecular and Cellular BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations