Environmental Modulation of Alpha-Glycerol-3-Phosphate Oxidase (GPO) Activity in Larvae of Drosophila melanogaster

  • Stephen W. McKechnie
  • Jennifer L. Ross
  • Kerrin L. Turney
Part of the Monographs in Evolutionary Biology book series (MEBI)


Evolution has led to a variety of adaptive processes which enable organisms to cope with an environment that changes. Internal homeostasis needs to be maintained for metabolic processes to continue and for DNA to replicate. Such adaptations occur at all levels of organisation. At one extreme, mobility and behavioural adaptations allow the organism to experience only optimal patches of a heterogeneous environment. Other adaptations enable the organism to thrive over a broad range of environmental extremes by making physiological/biochemical adjustments, which preserve “constant the conditions of life in the internal environment” (Claude Bernard, quoted from Haldane, 1932).


Brown Adipose Tissue Cold Exposure Flight Muscle Ethanol Oxidation Sucrose Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amersham, 1985, Membrane Transfer and Detection Methods, Amersham International plc.Google Scholar
  2. Blackstock, J., 1984, Biochemical metabolic regulation responses of marine invertebrates to natural environmental change and marine pollution, Oceanogr. & Mar. Biol. Ann. Rev. 22:263–313.Google Scholar
  3. Bradford, M. M., 1976, A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem. 72:248–254.PubMedCrossRefGoogle Scholar
  4. Bukowiecki, L. J., and Lindberg, O., 1974, Control of sn-glycerol-3-phosphate oxidation in brown adipose tissue mitochondria by calcium and acyl-CoA, Biochim. Biophys. Acta 348:115–125.PubMedCrossRefGoogle Scholar
  5. Chandler, P. M., Higgens, T. J. v., Randall P. J., and Spencer, D., 1983, Regulation of legumin levels in developing pea seeds under conditions of sulfur deficiency. Rates of legumin synthesis and levels of legumin mRNA, Plant Physiol. 71:46–54.CrossRefGoogle Scholar
  6. Cottingham, I. R., and Ragan, C. I., 1980, Purification and properties of L-3-glycerophosphate dehydrogenase from pig brain mitochondria, J. Biochem. 192:9–18.Google Scholar
  7. Davis, L. G., Dibner, M. D., and Battey, J. F., 1986, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  8. Davis, M. B., and Maclntyre, R. J., 1988, A genetic analysis of the alpha-glycerol-3-phosphate oxidase in Drosophila melanogaster, Genetics 120:755–766.PubMedGoogle Scholar
  9. Dawson, A. G., 1979, Oxidation of cytosolic NADH formed during aerobic metabolism in mammalian cells, Trends Biochem. Sci. 4:171–176.CrossRefGoogle Scholar
  10. DiMichelle, L., and Powers, D. A., 1984, Developmental and oxygen comsumption rate differences between lactate dehydrogenase-B genotypes of Fundulus heteroclitus and their effect on hatching time, Physiol. Zool. 57:52–56.Google Scholar
  11. Estabrook, R. W., and Sacktor, B., 1958, Alpha-glycerophosphate oxidase in flight muscle mitochondria, J. biol. Chem. 233:1014–1019.PubMedGoogle Scholar
  12. Fyrberg, E. A., Bond, B. J., Hershey, D., and Mixter, K. S., 1981, The actin genes of Drosophila: Protein coding regions are highly conserved but intron positions are not, Cell 24:107–116.PubMedCrossRefGoogle Scholar
  13. Garrib, A., and McMurray, W. C., 1986, Purification and characterization of glycerol-3-phosphate dehydrogenase (flavin-linked) from rat liver mitochondria, J. biol. Chem. 261:8042–8048.PubMedGoogle Scholar
  14. Geer, B. W., Langevin, M. L., and McKechnie, S. W., 1985, Dietary ethanol and lipid synthesis in Drosophila melanogaster, Biochem. Genet. 23:607–622.CrossRefGoogle Scholar
  15. Geer, B. W., McKechnie, S. W., Bentley, M. M., Oakeshott, J. G., Quinn, E. M., and Langevin, M. L., 1988, Induction of ADH by ethanol in Drosophila melanogaster, J. Nutr. 118:398–407.PubMedGoogle Scholar
  16. Geer, B. W., McKechnie, S. W., and Langevin, M. L., 1983, Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose, J. Nutr. 113:1632–1642.PubMedGoogle Scholar
  17. Golgia, F., Liverini, G., De Leo, T., and Barletta, A., 1983, Thyroid state and mitochondria population during cold exposure, Pflugers Arch. 396:49–53.CrossRefGoogle Scholar
  18. Haldane, J. B. S., 1932, The Causes of Evolution, Harper, New York and London.Google Scholar
  19. Hilbish, T. J., and Koehn, R. K., 1985, The physiological basis of natural selection at the Lap locus, Evolution 39:1302–1317.CrossRefGoogle Scholar
  20. Hochachka, P. W., and Somero, G. N., 1984, Biochemical Adaptation, Princeton University Press.Google Scholar
  21. Houstek, J. and Drahota, Z., 1975, The regulation of glycerol-3-phosphate oxidase of rat brown adipose tissue mitochondria by long-chain free fatty acids, Mol. Cell. Biochem. 7:45–50.PubMedCrossRefGoogle Scholar
  22. Houstek, J., Cannon, B., and Lindberg, O., 1975, Glycerol-3-phosphate shuttle and its function in intermediary metabolism of hamster brown-adipose tissue, Eur. J. Biochem. 54:11–18.PubMedCrossRefGoogle Scholar
  23. Kistler, N. S., Hirsch, C. A., Cozzarelli, N. R., and Lin, E. C., 1969, Second pyridine nucleotide-independent L-alpha-glycerophosphate dehydrogenase in Escherichia coli K-12, J. Bact. 100:1133–1135.PubMedGoogle Scholar
  24. Klein, A. H., Reviczky, A., Chou, P., Padbury J., and Fischer, D. A., 1983, Development of brown adipose tissue thermogenesis in the ovine fetus and newborn, Endocrinology 112:1662–1666.PubMedCrossRefGoogle Scholar
  25. Klein, A. H., Reviczky, A., and Padbury, J. F., 1984, Thyroid hormones augment catecholamine-stimulated brown adipose tissue thermogenesis in the ovine fetus, Endocrinology 114:1065–1069.PubMedCrossRefGoogle Scholar
  26. Klingenberg, M., 1970, Localization of GPDH in the outer phase of the mitochondrial inner membrane, Eur. J. Biochem. 13:247–252.PubMedCrossRefGoogle Scholar
  27. Lee, Y. P., and Lardy, H. A., 1965, Influence of thyroid hormones on L-alpha-glycerophosphate dehydrogenase and other dehydrogenases in various organs of the rat, J. biol. Chem. 240:1427–1436.PubMedGoogle Scholar
  28. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  29. MacIntyre, R. J., and Davis, M. B., 1987, A genetic and molecular analysis of the alpha-glycerophosphate cycle in Drosophila melanogaster, Isozymes. Current Topics in Biological & Medica1 Research 14:195–227.Google Scholar
  30. McKechnie, S. W., and Geer, B. W., 1984, Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate, Insect Biochem. 14:231–242.CrossRefGoogle Scholar
  31. McKechnie, S. W., and Geer, B. W., 1986, sn-Glycerol-3-phosphate oxidase and alcohol tolerance in Drosophila melanogaster larvae, Biochem. Genet. 24:859–872.Google Scholar
  32. McKechnie, S. W., and Morgan, P., 1982, Alcohol dehydrogenase polymorphism of Drosophila melanogaster: Aspects of alcohol and temperature variation in the larval environment, Aust. J. hiol. Sci. 35:85–93.Google Scholar
  33. McKenzie, J. A., 1978, The effect of developmental temperature on population flexibility in Drosophila melanogaster and D. simulans, Aust. J. Zool. 26:105–112.CrossRefGoogle Scholar
  34. Molaparast-Shahidsaless, F., Shrago, E., and Elson, C. E., 1979, Alpha-glycerophosphate and dihydroxyacetone phosphate metabolism in rats fed high-fat or high-sucrose diets, J. Nutr. 109:1560–1569.PubMedGoogle Scholar
  35. O’Brien, S. J., and MacIntyre, R. J., 1972, The alpha-glycerophosphate cycle in Drosophila melanogaster. I. Biochemical and developmental aspects, Biochem. Genet. 7:141–161.PubMedCrossRefGoogle Scholar
  36. Ohkawa, K., Vogt, M. T., and Farber, E., 1969, Unusually high mitochondrial alpha-glycerophosphate dehydrogenase activity in rat brown adipose tissue, J. Cell Biol. 41:441–449.PubMedCrossRefGoogle Scholar
  37. Poso, A. R., 1977, Influence of mitochondrial alpha-glycerophosphate oxidase on the alpha-glycerophosphate shuttle during ethanol oxidation, FEBS Lett. 83:285–287.PubMedCrossRefGoogle Scholar
  38. Sacktor, B., 1970, Regulation of intermediary metabolism with special reference to control mechanisms in insect flight muscle, Adv. Insect Physiol. 7:267–347.CrossRefGoogle Scholar
  39. Schantz, P. G., and Henriksson, J., 1987, Enzyme levels of the NADH shuttle systems: measurements in isolated muscle fibres from humans of differing physical activity, Acta physiol. scand. 129:505–515.PubMedCrossRefGoogle Scholar
  40. Shaw, M. A., Edwards, Y. H., and Hopkinson, D. A., 1982, Human mitochondrial glycerol phosphate dehydrogenase (GPDm) isozymes, Ann. Hum. Genet. 46:11–23.PubMedCrossRefGoogle Scholar
  41. Videla, L., Flattery, K. V., Sellers, E. A., and Israel, Y., 1975, Ethanol metabolism and liver oxidative capacity in cold acclimation, J. Pharmac. exp. Ther. 192:575–582.Google Scholar
  42. von Jagow, G., and Klingenberg, M., 1960, Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis, Eur. J. Biochem. 12:583–592.CrossRefGoogle Scholar
  43. Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., and Weiner, A.M., 1987, Molecular Biology of the Gene, Vol. 1, 4th ed., Ben-jamin/Cummings Publishing Company, Inc., Menlo Park, Calif.Google Scholar
  44. Watt, W. B., Cassin, R. C., and Swan, M. S., 1983, Adaptation at specific loci. III. Field behavior and survivorship differences among Colias PGI genotypes are predictable from in vitro biochemistry, Genetics 103:725–739.PubMedGoogle Scholar
  45. Yamada, M., 1973, Effect of environmental temperature on activity of glycerophosphate dehydrogenases, Am. J. Physiol. 224:1420–1424.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Stephen W. McKechnie
    • 1
  • Jennifer L. Ross
    • 1
  • Kerrin L. Turney
    • 1
  1. 1.Department of Genetics and Developmental BiologyMonash UniversityClaytonAustralia

Personalised recommendations