Ecological and Evolutionary Importance of Host Plant Chemistry

  • James C. Fogleman
  • J. Ruben Abril
Part of the Monographs in Evolutionary Biology book series (MEBI)


In the last two decades, there has been an increasing interest in the inter-disciplinary subject of the chemical ecology of insects. A large part of this subject concerns the chemistry of the interactions between insects and their host plants. The cactus-microorganism-Drosophila model system of the Sonoran Desert provides an excellent opportunity to pursue the subject of chemical ecology in a system which is also amenable to the study of evolutionary and ecological genetics. By examining the chemical interactions between the desert Drosophila and their cactus host plants, insights into aspects of the habitat that impact on the fitness of the flies can be gained. The cactophilic Drosophila in this model system feed and breed in necrotic stems of columnar cacti. In order to do this, the flies must be able to locate suitable rot pockets, assimilate required nutrients, and be able to tolerate whatever toxic compounds might be present in the cactus tissue. Microorganisms which grow in the developing rot serve as a food source for the Drosophila as well as modify the cactus tissue both physically and chemically.


Total Sugar Content Sonoran Desert Cactus Species Host Plant Selection Columnar Cactus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, el-.R. A., and Labavitch, J. M., 1977, A simplified method for accurate determination of cell wall uronide content, J. Food Biochem. 1:361–365.CrossRefGoogle Scholar
  2. Binder, R. G., Chan, B. G., and Elliger, C. A., 1979, Antibiotic effects of C10-C12 fatty acid esters on pink bollworm, bollworm, and tobacco budworm, Agric. Biol. Chem. 43:2467–2471.CrossRefGoogle Scholar
  3. Brazner, J., Aberdeen, V., and Starmer, W. T., 1984, Host-plant shifts and adult survival in the cactus breeding Drosophila mojavensis, Ecol. Entomol. 9:375–381.CrossRefGoogle Scholar
  4. Campbell, C. E., and Kircher, H. W., 1980, Senita cactus: a plant with interrupted sterol biosynthetic pathways, Phytochemistry 19:2777–2779.CrossRefGoogle Scholar
  5. Downing, R. J., 1985, The chemical basis for host plant selection in Drosophila mojavensis, MS Thesis, Univ. of Denver, Denver, CO.Google Scholar
  6. Fellows, D. P., and Heed, W. B., 1972, Factors affecting host plant selection in desert-adapted Drosophila, Ecology 53:850–858.CrossRefGoogle Scholar
  7. Fogleman, J. C., 1982, The role of volatiles in the ecology of cactophilic Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 191–206.Google Scholar
  8. Fogleman, J. C., 1984, The ability of cactophilic Drosophila to utilize soaked soil as larval substrates, Drosoph. Inf. Serv. 60:105–107.Google Scholar
  9. Fogleman, J. C., and Armstrong, L., 1989, Ecological aspects of cactus triterpene glycosides. I. Their effect on fitness components of Drosophila mojavensis, J. Chem. Ecol. 15:663–676.CrossRefGoogle Scholar
  10. Fogleman, J. C., and Foster, J. L. M., 1989, Microbial colonization of injured cactus tissue and its relationship to the ecology of desert-adapted Drosophi1a, Appl. & Environ. Microbiol. 55:100–105.Google Scholar
  11. Fogleman, J. C., and Heed, W. B., 1981, A comparison of the yeast flora in the larval substrates of D. nigrospiracula and D. mettleri, Drosoph. Inf. Serv. 56:38–39.Google Scholar
  12. Fogleman, J. C., and Heed, W. B., 1989, Columnar cacti and desert Drosophila: the chemistry of host plant specificity, in: Special Biotic Relationships in the Arid Southwest (J. Schmidt, ed.), Univ. of New Mexico Press, Albuquerque, pp. 1–24.Google Scholar
  13. Fogleman, J. C., and Kircher, H. W., 1986, Differential effects of fatty acid chain length on the viability of two species of cactophilic Drosophi1a, Comp. Biochem. Physiol. 83A: 761–764.CrossRefGoogle Scholar
  14. Fogleman, J. C., Duperret, S. M., and Kircher, H. W., 1986, The role of phytosterols in host plant utilization by cactophilic Drosophila, Lipids 21:92–96.CrossRefGoogle Scholar
  15. Fogleman, J. C., Hackbarth, K. R., and Heed, W. B., 1981, Behavioral differentiation between two species of cactophilic Drosophila. III. Oviposition site preference, Am. Nat. 118:541–548.CrossRefGoogle Scholar
  16. Fogleman, J. C., Heed, W. B., and Kircher, H. W., 1982, Drosophila mettleri and senita cactus alkaloids: fitness measurements and their ecological significance, Comp. Biochem. Physiol. 71A:413–417.CrossRefGoogle Scholar
  17. Gibson, A. C., and Horak, K. E., 1978, oSystematic anatomy and phylogeny of mexican columnar cacti, Ann. Missouri Bot. Gard. 65:999–1057.Google Scholar
  18. Gibson, A. C., and Nobel, P. S., 1986, The Cactus Primer, Harvard Univ. Press, Cambridge.Google Scholar
  19. Goodnight, K. C., and Kircher, H. W., 1971, Metabolism of lathosterol by Drosophila pachea, Lipids 6:166–169.PubMedCrossRefGoogle Scholar
  20. Harley, K. L. S., and Thorsteinson, A. J., 1967, The influence of plant chemicals on the feeding behavior, development and survival of the two-striped grasshopper, Melanoplus bivattatus (Say), Acrididae: Orthoptera, Can. J. Zool. 45:305.CrossRefGoogle Scholar
  21. Heed, W. B., 1978, Ecology and genetics of Sonoran Desert Drosophila, in: Ecological Genetics: The Interface (P. F. Brussard, ed.), Springer-Verlag, New York, pp.109–126.CrossRefGoogle Scholar
  22. Heed, W. B., 1982, The origin of Drosophila in the Sonoran Desert, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 65–80.Google Scholar
  23. Heed, W. B., and Kircher, H. W., 1965, Unique sterol in the ecology and nutrition of Drosophila pachea, Science 149:758–761.PubMedCrossRefGoogle Scholar
  24. Heed, W. B., and Mangan, R. L., 1986, Community ecology of the Sonoran Desert Drosophila, in: The Genetics and Biology of Drosophila, Vol. 3e (M. Ashburner, H. L. Carson, and J. N. Thompson Jr., eds), Academic Press, London, pp. 311–345.Google Scholar
  25. Hutner, S. H., Kaplan, H. M., and Enzmann, E. V., 1937, Chemicals attracting Drosophila, Am. Nat. 71:575–581.CrossRefGoogle Scholar
  26. Kircher, H. W., 1977, Triterpene glycosides and queretaroic acid in organ pipe cactus, Phytochemistry, 16:1078–1080.CrossRefGoogle Scholar
  27. Kircher, H. W., 1982, Chemical composition of cacti and its relationship to Sonoran Desert Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 143–158.Google Scholar
  28. Kircher, H. W., Heed, W. B., Russell, J. S., and Grove, J., 1967, Senita cactus alkaloids: their significance to Sonoran Desert ecology, J. Insect Physiol. 13:1869–1874.CrossRefGoogle Scholar
  29. Mangan, R. L., 1982, Adaptations to competition in cactus breeding Drosophila, in: Ecological Genetics and Evolution: The Cactus-Yeast-Drosophila Model System (J. S. F. Barker, and W. T. Starmer, eds), Academic Press Australia, Sydney, pp. 257–272.Google Scholar
  30. Meyer, J. M., and Fogleman, J. C., 1987, Significance of saguaro cactus alkaloids in the ecology of Drosophila mettleri, a soil-breeding, cactophilic drosophilid, J. Chem. Ecol. 13:2069–2081.CrossRefGoogle Scholar
  31. Phaff, H. J., Starmer, W. T., Tredick, J., and Miranda, M., 1985, Pichia deserticola and Candida deserticola, two new species of yeasts associated with necrotic stems of cacti, Int. J. Syst. Bacterol. 35:211–216.CrossRefGoogle Scholar
  32. Reed, M. R., 1938, The olfactory reactions of Drosophila melanogaster Meigen to the products of fermenting bananas, Physiol Zool. 11:317–325.Google Scholar
  33. Roff, D. C., 1977, Dispersal in dipterans: Its costs and consequences, J. Anim. Ecol. 46:443–456.CrossRefGoogle Scholar
  34. Ruiz, A., and Heed, W. B., 1988, Host-plant specificity in the cactophilic Drosophila mulleri species complex, J. Anim. Ecol. 57:237–249.CrossRefGoogle Scholar
  35. Schreiber, K., 1958, Über einige Inhaltsstoffe der Solanaceen und ihre Bedeutung fur die Kartoffelkaferresistenz, Entomol. exp. appl. 1:28–37.CrossRefGoogle Scholar
  36. Shepard, H. H., 1951, The Chemistry and Action of Insecticides, McGraw-Hill, New York.Google Scholar
  37. Starmer, W. T., 1982, Analysis of the community structure of yeasts associated with the decaying stems of cactus. I. Stenocereus gummosus, Microb. Ecol. 8:71–81.CrossRefGoogle Scholar
  38. Starmer, W. T., Barker, J. S. F., Phaff, H. J., and Fogleman, J. C., 1986, Adaptations of Drosophila and yeasts:their interactions with the volatile 2-propanol in the cactus-microorganism-Drosophila model system, Aust. J. biol. Sci. 39:69–77.PubMedGoogle Scholar
  39. Starmer, W. T., Kircher, H. W., and Phaff, H. J., 1980, Evolution and speciation of host plant specific yeasts, Evolution 34:137–146.CrossRefGoogle Scholar
  40. Whiting, G. C., 1970, Sugars, in: The Biochemistry of Fruits and their Products, Vol 1 (A. C. Hulme, ed.), Academic Press, New York, pp. 1–31.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • James C. Fogleman
    • 1
  • J. Ruben Abril
    • 1
  1. 1.Department of Biological SciencesUniversity of DenverDenverUSA

Personalised recommendations