Advertisement

Electrochemical and Photoelectrochemical Reduction of Carbon Dioxide

  • Isao Taniguchi
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 20)

Abstract

The reduction of carbon dioxide has been a subject of active interest for more than a century.1 Especially in recent years, electrochemical and photoelectrochemical reduction of carbon dioxide has been extensively studied.2-4 This is because this reaction has several attractive features. In view of the increasing possibility of unavailability of oil and other fossil fuels in the near future,5,6 alternative fuels have to be produced from abundant resources such as carbon dioxide and water. Carbon dioxide reduction is also an important branch of C1 chemistry. In addition, the effect of recent excessive production of carbon dioxide on the future climate of the Earth is being seriously discussed,7 and carbon dioxide reduction to organic raw materials or fuels would help to reduce this type of atmospheric pollution as well. Carbon dioxide reduction can be used as a suitable reaction for energy storage, as is required, for instance, in the conversion of solar to storable chemical energy.8,9 Moreover, formic acid, which is one of the reduction products of carbon dioxide, has been proposed as a convenient means of hydrogen storage.10

Keywords

Formic Acid Current Efficiency Electrochemical Reduction Propylene Carbonate Carbon Dioxide Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. E. Royer, C. R. Acad. Sci. 70 (1870) 731.Google Scholar
  2. 2.
    J.-P. Randin, in Encyclopedia of Electrochemistry of the Elements, Vol. VII, Ed. by A. J. Bard, Marcel Dekker, New York, 1976, Chap. 1.Google Scholar
  3. 3.
    J. R. Bolton and D. O. Hall, Annu. Rev. Energ. 4 (1979) 353.Google Scholar
  4. 4.
    M. Halmann, in Energy Resources through Photochemistry and Catalysis, Ed. by M. Gratzel, Academic, New York, 1983, Chap. 15.Google Scholar
  5. 5.
    D. Root and E. Attanasi, Am. Assoc. Petrol. Geol. Bull (1978).Google Scholar
  6. 6.
    J. O’M. Bockris, Energy, The Solar-Hydrogen Alternative, Australia & New Zealand Book Co., Sydney, 1975.Google Scholar
  7. 7.
    J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, R Lee, D. Lind, and G. Russel, Science 213 (1981) 957.Google Scholar
  8. 8.
    S. Inoue and N. Yamazaki,Eds., Organic and Bioorganic Chemistry of Carbon Dioxide, Kodansha Ltd., Tokyo and Wiley, New York, 1982.Google Scholar
  9. 9.
    J. R. Bolton, A. F. Haught, and R. T. Ross, in Photochemical Conversion and Storage of Solar Energy, Ed. by J. S. Connolly, Academic, New York, 1981, p. 297.Google Scholar
  10. 10.
    R. Williams, R. S. Crandall, and A. Bloom, Appl. Phys. Lett. 33 (1978) 381.Google Scholar
  11. 11.
    M. Calvin, in Photochemical Conversion and Storage of Solar Energy, Ed. by J. S. Connolly, Academic, New York, 1981, p. 1.Google Scholar
  12. 12.
    G. J. F. Chittenden and A. W. Schwartz, Biosystems 14 (1981) 15.Google Scholar
  13. 13.
    C. Folsome and A. Brittain, Nature 291 (1981) 482.Google Scholar
  14. 14.
    R. D. Brown, in Origin of Life, Ed. by Y. Wolman, Reidel, Dordrecht, 1981, p. 1.Google Scholar
  15. 15.
    F. Fischer and O. Prziza, Ber. Dtsch. Chem. Ges. 47 (1914) 256.Google Scholar
  16. 16.
    K. S. Udapa, G. S. Subramanian, and H. V. K. Udapa, Electrochim. Acta 16 (1971) 1593.Google Scholar
  17. 17.
    A. Bewick and G. R Greener, Tetrahedron Lett. (1969) 4623; (1970) 391.Google Scholar
  18. 18.
    K. Ito, T. Murata, and S. Ikeda, Bull. Nagoya Inst. Tech. 27 (1975) 209.Google Scholar
  19. 19.
    P. G. Russell, N. Kovac, S. Srinivasan, and M. Steinberg, J. Electrochem. Soc. 124 (1977) 1329.Google Scholar
  20. 20.
    Y. Hori, N. Kamide, and S. Suzuki, J. Faculty Eng. Chiba Univ. 32 (1981) 37.Google Scholar
  21. 21.
    K. J. Vetter, Electrochemical Kinetics, Academic, New York, 1967.Google Scholar
  22. 22.
    S. Kapusta and N. Hackerman, J. Electrochem. Soc. 130 (1983) 607.Google Scholar
  23. 23.
    Y. Hori, K. Kikuchi, and S. Suzuki, Chem. Lett. (1985) 1695; Y. Hori, K. Kikuchi, A. Murata, and S. Suzuki, Chem. Lett. (1986) 897.Google Scholar
  24. 24.
    K. W. Frese, Jr. and S. Leach, J. Electrochem. Soc. 132 (1985) 259.Google Scholar
  25. 25.
    D. P. Summers, S. Leach, and K. W. Frese, Jr., J. Electroanal. Chem. 205 (1986) 219.Google Scholar
  26. 26.
    I. Taniguchi, N. Nakashima, K. Ogata, and Y. Shiraishi, unpublished results.Google Scholar
  27. 27a.
    K. Ito, S. Ikeda, and M. Okabe, Denki Kagaku 48 (1980) 247Google Scholar
  28. 27b.
    K. Ito, S. Ikeda, T. Iida, and H. Niwa, Denki Kagaku 49 (1981) 106.Google Scholar
  29. 28.
    H. Stephen and T. Stephen, Eds., Solubilities of Inorganic and Organic Compounds, Vol. 1, Macmillan, New York, 1963, Part 2, p. 1063.Google Scholar
  30. 29.
    W. F. Linke, Solubility of Inorganic and Metal Organic Compounds, 4th Ed., Van Nostrand, New York, 1958, p. 480.Google Scholar
  31. 30.
    H. L. Clever and R. Battino, in Solutions and Solubilities, Ed. by M. R. J. Cack, Wiley, New York, 1975, p. 386.Google Scholar
  32. 31.
    J. L. Roberts, Jr. and D. T. Sawyer, J. Electroanal Chem. 9 (1965) 1.Google Scholar
  33. 32.
    E. Lamy, L. Nadjo, and J.-M. Saveant, J. Electroanal. Chem. 78 (1977) 403.Google Scholar
  34. 33.
    B. R. Eggins and J. McNeill, J. Electroanal. Chem. 148 (1983) 17.Google Scholar
  35. 34.
    U. Von Kaiser and E. Heitz, Ber. Bunsenges. Phys. Chem. 11 (1973) 818.Google Scholar
  36. 35.
    D. A. Tyssee, J. H. Wagenknecht, M. M. Baizer, and J. L. Chruma, Tetrahedron Lett. (1972) 4809.Google Scholar
  37. 36.
    S. Gambino and G. Silvestri, Tetrahedron Lett. (1973) 3025.Google Scholar
  38. 37.
    J. C. Gressin, D. Michelet, L. Nadjo, and J.-M. Saveant, Nouv. J. Chim. 3 (1979) 545.Google Scholar
  39. 38.
    J. Fischer, Th. Lehmann, and E. Heintz, J. Appl. Electrochem. 11 (1981) 743.Google Scholar
  40. 39.
    F. Goodridge and G. Presland, J. Appl. Electrochem. 14 (1984) 791.Google Scholar
  41. 40.
    K. Ito, S. Ikeda, T. Iida, and A. Nomura, Denki Kaguku 50 (1982) 463.Google Scholar
  42. 41.
    I. Taniguchi, N. Nakashima, and K. Ogata, unpublished results.Google Scholar
  43. 42.
    K. Ito, S. Ikeda, N. Yamauchi, T. Iida, and T. Takagi, Bull. Chem. Soc. Jpn 58 (1985) 3027.Google Scholar
  44. 43a.
    P. Van Rysselberghe and G. J. Alkire, J. Am. Chem. Soc. 66 (1944) 1801Google Scholar
  45. 43b.
    T. E. Teeter and P. Van Rysselberghe, J. Chem. Phys. 22 (1954) 759.Google Scholar
  46. 44.
    Y. Hori and S. Suzuki, J. Electrochem. Soc. 130 (1983) 2387.Google Scholar
  47. 45a.
    W. Paik, T. N. Andersen, and H. Eyring, Electrochim. Acta 14 (1969) 1217Google Scholar
  48. 45b.
    J. Ryu, T. N. Andersen, and H. Eyring, J. Phys. Chem. 76 (1972) 3278.Google Scholar
  49. 46.
    Y. Hon and S. Suzuki, Bull. Chem. Soc. Jpn. 55 (1982) 660.Google Scholar
  50. 47.
    A. W. B. Aylmer-Kelly, A. Bewick, P. R. Cantrill, and A. M. Tuxford, Discuss. Faraday Soc. 56 (1973) 96.Google Scholar
  51. 48.
    A. V. Zakharyan, N. V. Osetrova, and Yu. B. Vasilev, Sov. Electrochem. 13 (1978) 1568; A. V. Zakharyan, Z. A. Rotenberg, N. V. Osetrova, and Yu. B. Vasilev, Sov. Electrochem. 14 (1978) 1317.Google Scholar
  52. 49.
    D. J. Schiffrin, Discuss. Faraday Soc. 56 (1973) 75.Google Scholar
  53. 50.
    B. Beden, A. Bewick, M. Razaq, and J. Weber, J. Electroanal. Chem. 139 (1982) 203.Google Scholar
  54. 51.
    S. D. Babenko, V. A. Benderskii, A. G. Krivenko, and V. A. Kurmaz, J. Electroanal. Chem. 159 (1983) 163.Google Scholar
  55. 52.
    Yu. B. Vassiliev, V. S. Bagotzky, N. V. Osetrova, O. A. Khazova, and N. A. Mayorova, J. Electroanal. Chem. 189 (1985) 271.Google Scholar
  56. 53.
    C. Amatore and J.-M. Saveant, J. Am. Chem. Soc. 103 (1981) 5021.Google Scholar
  57. 54.
    C. Amatore and J.-M. Saveant, J. Electroanal. Chem. 125 (1981) 23.Google Scholar
  58. 55.
    D. W. Overral and D. H. Whiffen, Mol. Phys. 4 (1961) 113.Google Scholar
  59. 56.
    M. M. Chang, T. Saji, and A. J. Bard, J. Am. Chem. Soc. 99 (1977) 5399.Google Scholar
  60. 57.
    Yu. B. Vassiliev, V. S. Bagotzky, O. A. Khazova, and N. A. Mayorova, J. Electroanal. Chem. 189 (1985) 295, 311.Google Scholar
  61. 58.
    B. Aurian-Blajeni, M. A. Habib, I. Taniguchi, and J. O’M. Bockris, J. Electroanal. Chem. 154 (1983) 399.Google Scholar
  62. 59a.
    K. Kunimatsu, J. Electroanal. Chem. 140 (1982) 205Google Scholar
  63. 59b.
    K. Kunimatsu, J. Phys. Chem. 88 (1984) 2195.Google Scholar
  64. 60a.
    H. Finsterholzl, Ber. Bunsenges. Phys. Chem. 86 (1982) 797Google Scholar
  65. 60b.
    R. Kruse and E. U. Frank, Ber. Bunsenges. Phys. Chem. 86 (1982) 1036.Google Scholar
  66. 61.
    M. R. Mahoney, M. W. Howard, and R. P. Cooney, Chem. Phys. Lett. 71 (1980) 59.Google Scholar
  67. 62.
    J. P. Keene, Y. Raef, and A. J. Swallow, in Pulse Radiolysis, Ed. by M. Evert, J. P. Keene, and A. J. Swallow, Academic, London, 1965, p. 100.Google Scholar
  68. 63.
    R. Maskiewicz and B. H. J. Bielski, Biochim. Biophys. Acta 638 (1981) 153.Google Scholar
  69. 64.
    B. Aurian-Blajeni, M. Halmann, and J. Manassen, J. Photochem. Photobiol. 35 (1982) 157.Google Scholar
  70. 65.
    Z. Sobkowski, A. Wieckowski, P. Zelenay, and A. Czerwinski, J.Electroanal. Chem. 100 (1979) 781.Google Scholar
  71. 66.
    A. M. Baruzzi, E. P. M. Leiva, and P. Giordano, J. Electroanal Chem. 158 (1983) 103.Google Scholar
  72. 67a.
    K. Kunimatsu, W. G. Golden, H. Seki, and M. R. Philpott, Langmuir 1 (1985) 245Google Scholar
  73. 67b.
    K. Kunimatsu, H. Seki, W. G. Golden, J. G. Golden II, and M. R. Philpott, Langmuir 2 (1986) 464.Google Scholar
  74. 68.
    M. A. Chesters, S. F. Parker, and R. Raval, Surf. Sci. 165 (1986) 179.Google Scholar
  75. 69.
    B. Beden, A. Bewick, and C. Lamy, J. Electroanal. Chem. 148 (1983) 147.Google Scholar
  76. 70.
    B. Beden, C. Lamy, A. Bewick, and K. Kunimatsu, J. Electroanal. Chem. 121 (1983) 343.Google Scholar
  77. 71.
    F. Adami, M.-C. Pham, P.-C. Lacaze, and J.-E. Dubois, J. Electroanal. Chem. 210 (1986) 295.Google Scholar
  78. 72.
    D. Barnes and P. Zuman, J. Electroanal. Chem. 46 (1973) 323.Google Scholar
  79. 73.
    S. Clarke and J. A. Harrison, J. Electroanal. Chem. 36 (1972) 109.Google Scholar
  80. 74.
    S. Kapusta and N. Hackerman, J. Electroanal. Chem. 138 (1982) 295.Google Scholar
  81. 75.
    M. Spichiger-Ulmann and J. Augustynski, J. Chem. Soc. Faraday Trans. 1 81 (1985) 713.Google Scholar
  82. 76.
    S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes, Plenum Press, New York, 1980.Google Scholar
  83. 77.
    G. Ghiotti and E. Garrone, J. Chem. Soc., Faraday Trans, 1, 76 (1980) 2102.Google Scholar
  84. 78.
    S. J. Tauster, S. C. Fung, R. T. K. Baker, and J. A. Horsley, Science 211 (1981) 1121.Google Scholar
  85. 79.
    K. Tanaka and J. M. White, J. Phys. Chem. 86 (1982) 3977.Google Scholar
  86. 80.
    F. Solymosi, A. Erdohelyi, and S. Bansagi, J. Chem. Soc, Faraday Trans. 1 77 (1981) 2645.Google Scholar
  87. 81.
    M. A. Henderson and S. D. Worley, J. Phys. Chem. 89 (1985) 1417.Google Scholar
  88. 82.
    A. Monnier, J. Augustynski, and C. Stalder, J. Electroanal. Chem. 112 (1980) 383.Google Scholar
  89. 83.
    T. Inoue, A. Fujishima, S. Konishi, and K. Honda, Nature 277 (1979) 633.Google Scholar
  90. 84.
    A. H. A. Tinnemans, T. P. M. Koster, O. H. M. W. Thewissen, C. W. Dekreuk, and A. Mackor, J. Electroanal. Chem. 145 (1983) 449.Google Scholar
  91. 85a.
    A. H. A. Tinnemans, T. P. M. Koster, O. H. M. W. Thewissen, and A. Mackor, Nouv. J. Chim. 6 (1982) 373Google Scholar
  92. 85b.
    A. H. A. Tinnemans, T. P. M. Koster, O. H. M. W. Thewissen, and A. Mackor, Sol. Energ. R&D Eur. Community, Ser D 2 (1983) 86.Google Scholar
  93. 86.
    J. Augustynski, J. Electroanal. Chem. 145 (1983) 457.Google Scholar
  94. 87.
    M. Koudelka, A. Monnier, and J. Augustynski, J. Electrochem. Soc. 131 (1984) 745.Google Scholar
  95. 88.
    M. H. Miles, A. N. Fletcher, G. E. McManis, and L. O. Spreer, J. Electroanal. Chem. 190 (1985) 157.Google Scholar
  96. 89a.
    D. Canfield and K. W. Frese, Jr., J. Electrochem. Soc. 130 (1983) 1772Google Scholar
  97. 89b.
    K. W. Frese, Jr. and D. Canfield, J. Electrochem. Soc. 131 (1984) 2518.Google Scholar
  98. 90.
    K. W. Frese, Jr. and D. Canfield, Extended Abstracts, Electrochem. Soc. Meeting, San Francisco, 1983, No. 693; Chem. Eng. News, Nov. 29 (1983).Google Scholar
  99. 91.
    W. M. Sears and S. R. Morrison, J. Phys. Chem. 89 (1985) 3295.Google Scholar
  100. 92.
    I. Taniguchi, H. Murakami, and T. Hayashida, unpublished results.Google Scholar
  101. 93.
    J. C. Hemminger, R. Carr, and G. A. Somorjai, Chem. Phys. Lett. 57 (1978) 100.Google Scholar
  102. 94a.
    A. J. Bard, Science 207 (1980) 139Google Scholar
  103. 94b.
    A. J. Bard, J. Photochem. 10 (1979) 59.Google Scholar
  104. 95.
    M. Halmann, Nature 275 (1978) 115.Google Scholar
  105. 96.
    M. Zafrir, M. Ulman, Y. Zuckerman, and M. Halmann, J. Electroanal. Chem. 159 (1983) 373.Google Scholar
  106. 97.
    B. Aurian-Blajeni, M. Halmann, and J. Manassen, Sol. Energ. Mater. 8 (1983) 425.Google Scholar
  107. 98a.
    A. Heller, B. Miller, H. J. Lewerenz, and K. J. Bachmann, J. Am. Chem. Soc. 102 (1980) 6555Google Scholar
  108. 98b.
    A. Heller, J. H. Lewerenz, and B. Miller, J. Am. Chem. Soc. 103 (1981) 200.Google Scholar
  109. 99.
    B. Aurian-Blajeni, I. Taniguchi, and J. O’M. Bockris, J. Electroanal. Chem. 149 (1983) 291.Google Scholar
  110. 100.
    Y. Taniguchi, H. Yoneyama, and H. Tamura, Bull. Chem. Soc. Jpn. 55 (1982) 2034.Google Scholar
  111. 101.
    K. Ito, S. Ikeda, M. Yoshida, S. Ohta, and T. Iida, Bull. Chem. Soc. Jpn. 57 (1984) 583.Google Scholar
  112. 102.
    K. Hiratsuka, K. Takahashi, H. Sasaki, and S. Toshima, Chem. Lett. (1977) 1137.Google Scholar
  113. 103.
    I. Taniguchi, B. Aurian-Blajeni, and J. O’M. Bockris, Electrochim. Acta 29 (1984) 923.Google Scholar
  114. 104.
    V. Guruswamy and J. O’M. Bockris, Energ. Res. 3 (1979) 397.Google Scholar
  115. 1051.
    Taniguchi, B. Ajrian-Blajeni, and J. O’M. Bockris, J. Electroanal. Chem. 157 (1983) 179.Google Scholar
  116. 106.
    M. Green, J. Chem. Phys. 31 (1959) 200.Google Scholar
  117. 107.
    V. A. Myamlin and Yu. V. Pleskov, Electrochemistry of Semiconductors, Plenum Press, New York, 1967.Google Scholar
  118. 108.
    S. Ikeda, M. Yoshida, and K. Ito, Bull. Chem. Soc. Jpn. 58 (1985) 1353;Google Scholar
  119. 108a.
    S. Ikeda and K. Ito, Abstracts of the Symposium on Electrochemistry and Catalytic Process for Carbon Dioxide and Nitrogen Fixation, held at the Institute for Molecular Science, Okazaki, 1986, p. 9 (in Japanese).Google Scholar
  120. 109.
    M. G. Bradley, T. Tysak, D. J. Graves, and N. A. Vlachopoulos, J. Chem. Soc. Chem. Commun. (1983) 349.Google Scholar
  121. 110.
    B. Fisher and R. Eisenberg, J. Am. Chem. Soc. 102 (1980) 7361.Google Scholar
  122. 111.
    M. G. Bradley and T. Tysak, J. Electroanal. Chem. 135 (1982) 153.Google Scholar
  123. 112.
    A. J. Bard, A. B. Bocarsly, F. R. F. Fan, E. G. Walton, and M. S. Wrighton, J. Am. Chem. Soc. 102 (1980) 3671;Google Scholar
  124. A. B. Bocarsly, D. C. Bookbinder, R. N. Dominey, N. S. Lewis, and M. S. Writon, J. Am. Chem. Soc. 102 (1980) 3683.Google Scholar
  125. 113.
    M. Beley, J.-P. Collin, J.-P. Sauvage, J.-P. Petit, and P. Chartier, J. Electroanal. Chem. 206 (1986) 333.Google Scholar
  126. 114.
    C. R. Carbera and H. D. Abruna, J. Electroanal. Chem. 209 (1986) 101.Google Scholar
  127. 115.
    M. Halmann and B. Aurian-Blajeni, Proceedings of the 2nd European Commun. Photovolt. Sol. Energ. Conference, 1979, p. 682.Google Scholar
  128. 116.
    B. Aurian-Blajeni, M. Halmann, and J. Manassen, Sol. Energ. 23 (1980) 165.Google Scholar
  129. 117.
    M. Ulmann, B. Aurian-Blajeni, and M. Halmann, 1sr. J. Chem. 22 (1982) 177.Google Scholar
  130. 118.
    M. Ulmann, A. H. A. Tinnemans, M. Mackor, B. Aurian-Blajeni, and M. Halmann, Int. J. Sol. Energ. 1 (1982) 213.Google Scholar
  131. 119.
    M. Halmann, V. Katzir, E. Borgarello, and J. Kiwi, Sol. Energ. Mater. 10 (1984) 85.Google Scholar
  132. 120.
    M. Halmann, B. Aurian-Blajeni, and S. Bloch, in Origin of Life, Ed. by Y. Wolman, Reidel, Dordrecht, 1981, p. 143.Google Scholar
  133. 121.
    M. Miyake, H. Yoneyama, and H. Tamura, J. Catal. 58 (1979) 22.Google Scholar
  134. 122.
    M. A. Enriquez and J. P. Fraissard, J. Chim. Phys. 78 (1981) 457.Google Scholar
  135. 123.
    A. Henglein and M. Gutierrez, Ber. Bunsenges. Phys. Chem. 87 (1983) 852.Google Scholar
  136. 124.
    A. Henglein, M. Gutierrez, and Ch.-H. Fisher, Ber. Bunsenges. Phys. Chem. 88 (1984) 170.Google Scholar
  137. 125.
    I. Taniguchi and T. Hayashida, unpublished results.Google Scholar
  138. 126.
    S. Meshitsuka, M. Ichikawa, and K. Tamaru, J. Chem. Soc. Chem. Commun. (1974) 158.Google Scholar
  139. 127.
    S. Kapusta and N. Hackerman, J. Electrochem. Soc. 131 (1984) 1511.Google Scholar
  140. 128.
    C. M. Lieber and N. S. Lewis, J. Am. Chem. Soc. 106 (1984) 5033.Google Scholar
  141. 129.
    K. Takahashi, K. Hiratsuka, H. Sasaki, and S. Toshima, Chem. Lett. (1979) 305.Google Scholar
  142. 130.
    J. Y. Becker, B. Vainas, R. Eger, and L. Kaufman, J. Chem. Soc. Chem. Commun. (1985) 1471.Google Scholar
  143. 131.
    D. H. Bush, Acc. Chem. Res. 11 (1978) 392.Google Scholar
  144. 132.
    A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen, and A. Mackor, Recl. Trav. Chim. Pays-Bas 103 (1984) 288.Google Scholar
  145. 133.
    D. J. Pearce and D. Pletcher, J. Electroanal. Chem. 197 (1986) 317.Google Scholar
  146. 134.
    C. L. Bailey, R. D. Bereman, D. P. Rillema, and R. Nowak, Inorg. Chim. Acta 116 (1986) L45.Google Scholar
  147. 135.
    M. Beley, J.-P. Collin, R. Ruppert, and J.-P. Sauvage, J. Chem. Soc., Chem. Commun. (1984) 1315; M. Beley, J.-P. Collin, R. Ruppert, and J.-P. Sauvage, J. Am. Chem. Soc. 108 (1986) 7461.Google Scholar
  148. 136.
    I. Taniguchi, Abstracts of the Symposium on Electrochemistry and Catalytic Process for Carbon Dioxide and Nitrogen Fixations, held at Institute for Molecular Science, Okazaki, 1986, p. 23 (in Japanese).Google Scholar
  149. 1371.
    Taniguchi, N. Nakashima, and K. Yasukouchi, J. Chem. Soc., Chem. Commun. (1986) 1814; I. Taniguchi, N. Nakashima, K. Matsushita, and K. Yasukouchi, J. Electroanal. Chem. 224 (1987) 199.Google Scholar
  150. 138.
    M. Tezuka, T. Yajima, A. Tsuchiya, Y. Matsumoto, Y. Uchida, and M. Hidai, J. Am. Chem. Soc. 104 (1982) 6834.Google Scholar
  151. 139.
    M. Nakazawa, Y. Mizobe, Y. Matsumoto, Y. Uchida, M. Tezuka, and M. Hidai, Bull. Chem. Soc. Jpn. 59 (1986) 809.Google Scholar
  152. 140.
    J. Hawecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun. (1984) 328.Google Scholar
  153. 141.
    J. Hawecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun. (1983) 536.Google Scholar
  154. 142.
    T. R. OToole, L. D. Margerum, T. D. Westmoreland, W. J. Vining, R. W. Murray, and T. J. Meyer, J. Chem. Soc., Chem. Commun. (1985) 1416.Google Scholar
  155. 143.
    S. Cosnier, A. Deronzier, and J.-C. Moutet, J. Electroanal. Chem. 207 (1986) 315.Google Scholar
  156. 144.
    B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, J. Chem. Soc., Chem. Commun. (1985) 1414.Google Scholar
  157. 145.
    A. I. Breikss and H. D. Abruna, J. Electroanal. Chem. 201 (1986) 347.Google Scholar
  158. 146.
    S. Slater and J. H. Wagenknecht, J. Am. Chem. Soc. 106 (1984) 5367.Google Scholar
  159. 147.
    R. Wienkamp and E. Steckhan, Angew. Chem. 94 (1982) 786;Google Scholar
  160. 147a.
    R. Wienkamp and E. Steckhan Angew. Chem., Int. Ed. Engl. 21 (1982) 782.Google Scholar
  161. 148.
    I. Taniguchi, unpublished results.Google Scholar
  162. 149.
    C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story, and T. J. Meyer, J. Chem. Soc., Chem. Commun. (1985) 796.Google Scholar
  163. 150.
    K. Tanaka, M. Morimoto, and T. Tanaka, Chem. Lett. (1983) 901; H. Ishida, K. Tanaka, and T. Tanaka, Chem. Lett. (1985) 405.Google Scholar
  164. 151.
    C. J. Stalder, S. Chao, and M. S. Wrighton, J. Am. Chem. Soc. 106 (1984) 3673.Google Scholar
  165. 152.
    C. J. Stalder, S. Chao, D. P. Summers, and M. S. Wrighton, J. Am. Chem. Soc. 105 (1983) 6318;Google Scholar
  166. 152a.
    C. J. Stalder, S. Chao, D. P. Summers, and M. S. Wrighton, J. Am. Chem. Soc. 106 (1984) 2723.Google Scholar
  167. 153.
    K. Ogura and M. Takagi, J. Electroanal. Chem. 201 (1986) 359; 206 (1986) 209; K. Ogura and I. Yoshida, J. Mol. Catal. 34 (1986) 67.Google Scholar
  168. 154.
    G. N. Petrova and O. N. Efimov, Elektrokhimiya 19 (1983) 978; Chem. Abstr. (1983) 157762 S.Google Scholar
  169. 155.
    S. Gambarotta, F. Arena, C. Floriani, and P. F. Zanazzi, J. Am. Chem. Soc. 104 (1982) 5082.Google Scholar
  170. 156.
    M. G. Mason and J. A. Ibers, J. Am. Chem. Soc. 104 (1982) 5153.Google Scholar
  171. 157.
    S. Sakaki and A. Dedieu, J. Organometal. Chem. 341 (1986) C63.Google Scholar
  172. 158.
    R. Eisenberg and D. E. Hendriksen, Adv. Catal. 28 (1979) 79.Google Scholar
  173. 159.
    D. J. Darensbourg and A. Kudaroski, Adv. Organometal. 22 (1983) 129.Google Scholar
  174. 160.
    I. Taniguchi, B. Aurian-Blajeni, and J. O’M. Bockris, J. Electroanal. Chem. 161 (1984) 385.Google Scholar
  175. 161.
    H. Lund and J. Simonet, J. Electroanal. Chem. 65 (1975) 205.Google Scholar
  176. 162.
    S. Tazuke and N. Kitamura, Nature 275 (1978) 301.Google Scholar
  177. 163.
    B. A. Parkinson and P. F. Weaver, Nature 309 (1984) 148.Google Scholar
  178. 164.
    N. Kitamura and S. Tazuke, Chem. Lett. (1983) 1109.Google Scholar
  179. 165.
    H. Kase, T. Iida, K. Yamane, and T. Mitamura, Denki Kagaku 54 (1986) 437.Google Scholar
  180. 166.
    J.-M. Lehn and R. Ziessel, Proc. Natl. Acad. Sci. USA 79 (1982) 701.Google Scholar
  181. 167.
    F. R. Keene, C. Creutz, and N. Sutin, Coord. Chem. Rev. 64 (1985) 247;Google Scholar
  182. 167a.
    C. Creutz and N. Sutin, Coord. Chem. Rev. 64 (1985) 321.Google Scholar
  183. 168.
    M. Kirch, J.-M. Lehn, and J.-P. Sauvage, Helv. Chim. Acta 62 (1979) 1345.Google Scholar
  184. 169.
    J. Hawecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc. Chem. Commun. (1985) 56.Google Scholar
  185. 170.
    D. J. Darensbourg, A. Rokicki, and M. Y. Darensbourg, J. Am. Chem. Soc. 103 (1981) 3224.Google Scholar
  186. 171.
    H. Hukkanen and T. T. Pakkanen, Inorg. Chim. Acta 114 (1986) L43.Google Scholar
  187. 172.
    B. Akermark, U. Eklund-Westlin, P. Beckstrom, and R. Lof, Acta Chem. Scand. B 34 (1980) 27.Google Scholar
  188. 173.
    D. R. Furge, G. D. Fong, and F. K. Fong, J. Am. Chem. Soc. 101 (1979) 3694.Google Scholar
  189. 174.
    C. E. Folsome, A. Brittain, A. Smith, and S. Chang, Nature 294 (1981) 64.Google Scholar
  190. 175.
    J. P. Pinto, G. R. Gladstone, and Y. L. Yung, Science 210 (1980) 183.Google Scholar
  191. 176.
    R. A. Sheldon, Chemicals from Synthesis Gas, Reidel, Dordrecht, 1983.Google Scholar
  192. 177.
    F. A. Uribe, P. R. Sharp, and A. J. Bard, J. Electroanal. Chem. 152 (1983) 173.Google Scholar
  193. 178.
    G. A. Kolyagin, V. G. Danilov, V. L. Kornienko, I. A. Kedrinskii, and S. P. Gubin, Elektrokhimiya 19 (1983) 1004; CA 9573 U (1983).Google Scholar
  194. 179.
    H. H. Sorch, H. Golumbic, and R. B. Anderson, The Fischer- Tropsch and Related Syntheses, Wiley, New York, 1951.Google Scholar
  195. 180.
    K. Ogura and S. Yamasaki, private communication.Google Scholar
  196. 181.
    T. Iizuka, Y. Tanaka, and K. Tanabe, J. Catal. 76 (1982) 1.Google Scholar
  197. 182.
    S. Polizzotti and J. A. Schwarz, J. Catal. 11 (1982) 1.Google Scholar
  198. 183.
    H. Miura, M. L. McLanghlin, and R. D. Gonzalez, J. Catal 79 (1983) 227.Google Scholar
  199. 184.
    R. Kirch, M. Kotter, and L. Rickert, Ber. Bunsenges. Phys. Chem. 88 (1984) 1054.Google Scholar
  200. 185.
    M. A. Vannice and C. Sudhakar, J. Phys. Chem. 88 (1984) 2429.Google Scholar
  201. 186.
    K. Kunimori, S. Matsui, and T. Uchijima, Chem. Lett. (1985) 359.Google Scholar
  202. 187.
    S. Yamamura, H. Kojima, and W. Kawai, J. Electroanal. Chem. 186 (1985) 309.Google Scholar
  203. 188.
    H. Yoneyama, K. Wakamoto, N. Hatanaka, and H. Tamura, Chem. Lett. (1985) 539.Google Scholar
  204. 189.
    I. Taniguchi and Y. Shiraishi, unpublished results.Google Scholar
  205. 190.
    B. A. Sexton and G. A. Somorjai, J. Catal. 46 (1977) 167.Google Scholar
  206. 191.
    G. D. Weatherbee and C. H. Bartholomew, J. Catal. 77 (1982) 460.Google Scholar
  207. 192.
    H. E. Ferkul, D. J. Stauton, J. D. McCowan, and M. C. Baird, J. Chem. Soc., Chem. Commun. (1982) 955.Google Scholar
  208. 193.
    T. Iizuka, M. Kojima, and K. Tanabe, J. Chem. Soc., Chem. Commun. (1983) 638.Google Scholar
  209. 194.
    H. Orita, S. Naito, and K. Tamaru, J. Chem. Soc, Chem. Commun. (1984) 150.Google Scholar
  210. 195.
    J. Yoshida, D. L. Thorn, T. Okano, J. A. Ibers, and S. Otsuka, J. Am. Chem. Soc. 101 (1979) 4212.Google Scholar
  211. 196.
    F. Solymosi, A. Erdohelyi, and T. Bansagi, J. Chem. Soc, Faraday Trans. 1 77 (1981) 2465.Google Scholar
  212. 197.
    K. Tanaka and J. M. White, J. Phys. Chem. 86 (1982) 3977.Google Scholar
  213. 198.
    A. Amariglio, A. Elbianche, and H. Amariglio, J. Catal. 98 (1986) 355.Google Scholar
  214. 199.
    F. Solymosi and J. Kiss, Surf. Sci. 149 (1985) 17.Google Scholar
  215. 200.
    H. A. C. M. Hendrickx, A. P. J. M. Jongenelis, and B. E. Nieumenhuys, Surf. Sci. 162 (1985) 269.Google Scholar
  216. 201.
    A. Czerwinski, J. Sobokowski, and R. Marassi, Anal. Lett. 18 (A14) (1985) 1717;Google Scholar
  217. 201a.
    J. Sobkowski and A. Czerwinski, J. Phys. Chem. 89 (1985) 365.Google Scholar
  218. 202.
    D. A. Tyssee and M. M. Baizer, J. Org. Chem. 39 (1974) 2819, 2823.Google Scholar
  219. 203.
    S. Wawzonek and D. Wearring, J. Am. Chem. Soc. 81 (1959) 1067.Google Scholar
  220. 204.
    M. M. Baizer and J. L. Chruma, J. Org. Chem. 37 (1972) 1951.Google Scholar
  221. 205.
    J. W. Wagenknecht, J. Electroanal. Chem. 52 (1974) 489.Google Scholar
  222. 206.
    S. Wawzonek and J. M. Shradel, J. Electrochem. Soc. 126 (1979) 401.Google Scholar
  223. 207.
    M. M. Baizer and H. Lund, Eds., Organic Electrochemistry, Marcel Dekker, New York, 1983, Chaps. 6, 20, and 25.Google Scholar
  224. 208.
    T. Tsuda, Y. Chujo, and T. Saegusa, J. Chem. Soc., Chem. Commun. (1975) 963.Google Scholar
  225. 209.
    T. Forschner, K. Menard, and A. Cutler, J. Chem. Soc., Chem. Commun. (1984) 121.Google Scholar
  226. 210.
    B. P. Sullivan and T. J. Meyer, J. Chem. Soc., Chem. Commun. (1984) 1244.Google Scholar
  227. 211.
    M. Kato and T. Ito, Inorg. Chem. 24 (1985) 504, 509;Google Scholar
  228. 211a.
    H. Ito and T. Ito, Bull. Chem. Soc. Jpn. 58 (1985) 1755.Google Scholar
  229. 212.
    E. G. Lundquist, K. Folting, J. C. Huffman, and K. G. Caulton, Inorg. Chem. 26 (1987) 205.Google Scholar
  230. 213.
    R. W. Murray, in Electroanalytical Chemistry, Vol. 13, Ed. by A. J. Bard, Marcel Dekker, New York, 1984, p. 191.Google Scholar
  231. 214.
    R. L. Cook, R. C. MacDuff, and A. F. Sammelles, J. Electrochem. Soc. 134 (1987) 1873; ibid., 134 (1987) 2375.Google Scholar
  232. 215.
    S. Ikeda, T. Takagi, and K. Ito, Bull. Chem. Soc. Jpn. 60 (1987) 2517.Google Scholar
  233. 216.
    Y. Hori, A. Murata, R. Takahashi, and S. Suzuki, J. Am. Chem. Soc. 109 (1987) 5022.Google Scholar
  234. 217.
    K. Ogura and H. Uchida, J. Electroanal. Chem. 220 (1987) 333.Google Scholar
  235. 218.
    H. Tanabe and K. Ohno, Electrochim. Acta 32 (1987) 1121.Google Scholar
  236. 219.
    K. Ogura and I. Yoshida, Electrochim. Acta 32 (1987) 1191;Google Scholar
  237. 219a.
    K. Ogura and M. Fujita, J. Mol. Catal. 41 (1987) 303.Google Scholar
  238. 220.
    Y. Hori, A. Murata, K. Kikuchi, and S. Suzuki, J. Chem. Soc, Chem. Commun. (1987) 728.Google Scholar
  239. 221.
    H. Ishida, H. Tanaka, K. Tanaka, and T. Tanaka, J. Chem. Soc, Chem. Commun. (1987) 131.Google Scholar
  240. 222.
    S. Daniele, P. Ugo, G. Bontempelli, and M. Fiorani, J. Electroanal. Chem. 219 (1987) 259.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Isao Taniguchi
    • 1
  1. 1.Department of Applied Chemistry, Faculty of EngineeringKumamoto UniversityKumamotoJapan

Personalised recommendations