Advertisement

Recent Advances in the Theory of Charge Transfer

  • A. M. Kuznetsov
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 20)

Abstract

Development of the quantum mechanical theory of charge transfer processes in polar media began more than 20 years ago. The theory led to a rather profound understanding of the physical mechanisms of elementary chemical processes in solutions. At present, it is a good tool for semiquantitative and, in some cases, quantitative description of chemical reactions in solids and solutions. Interest in these problems remains strong, and many new results have been obtained in recent years which have led to the development of new areas in the theory. The aim of this paper is to describe the most important results of the fundamental character of the results obtained during approximately the past nine years. For earlier work, we refer the reader to several review articles.1–4

Keywords

Potential Energy Surface Free Energy Surface Reorganization Energy Activation Free Energy Medium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. R. Dogonadze and A. M. Kuznetsov, Prog. Surf. Sci. 6 (1975) 1.Google Scholar
  2. 2.
    P. P. Schmidt, Specialist Periodical Report, Electrochemistry, Vol. 5, The Chemical Society, London, 1975, p. 21.Google Scholar
  3. 3.
    R. R. Dogonadze and A. M. Kuznetsov, Itogi Nauki i Tekhniki, Ser. Kinetika i Katalis, Vol. 5, VINITI, Moscow, 1978, p. 2.Google Scholar
  4. 4.
    J. Ulstrup, Charge Transfer Processes in Condensed Media, Springer-Verlag, Berlin, 1979.Google Scholar
  5. 5.
    R. R. Dogonadze and A. M. Kuznetsov, Itogi Nauki i Tekhniki, Ser. Fizicheskaya Khimiya, Kinetika, Vol. 2, VINITI, Moscow, 1973, p. 3.Google Scholar
  6. 6.
    A. M. Kuznetsov, Nouv. J. Chimie 5 (1981) 427.Google Scholar
  7. 7.
    Sh. Efrima and M. Bixon, J. Chem. Phys. 64 (1976) 3639.Google Scholar
  8. 8a.
    R. A. Marcus, J. Phys. Chem. 24 (1956) 966.Google Scholar
  9. 8b.
    R. A. Marcus, J. Phys. Chem. 24 (1956) 979.Google Scholar
  10. 9.
    M. Bixon and J. J. Jortner, Faraday Disc. Chem. Soc. 74 (1982) 17.Google Scholar
  11. 10.
    A. A. Ovchinnikov and V. A. Benderskii, Fizicheskaya Khimiya. Sovremennye Problemy, Ed. by Ya. M. Kolotyrkin, Khimiya, Moscow, 1980, p. 159.Google Scholar
  12. 11.
    A. M. Kuznetsov, Elektrokhimiya 17 (1981) 84.Google Scholar
  13. 12.
    R. R. Dogonadze and A. M. Kuznetsov, J. Res. Inst. CataL, Hokkaido Univ. 22 (1974) 93.Google Scholar
  14. 13.
    G. A. Bogdanchikov, A. I. Burshtein, and A. A. Zharikov, Chem. Phys. 86 (1984) 9.Google Scholar
  15. 14.
    A. M. Kuznetsov, J. Electroanal. Chem. 159 (1983) 241.Google Scholar
  16. 15.
    A. K. Churg, R. M. Weiss, A. Warshel, and T. Takano, J. Phys. Chem. 87 (1983) 1683.Google Scholar
  17. 16.
    A. M. Kuznetsov and J. Ulstrup, Phys. Status Solidi B 114 (1982) 673.Google Scholar
  18. 17.
    A. M. Kuznetsov, Ph.D. thesis, The Moscow Engineering Physics Institute, Moscow 1964.Google Scholar
  19. 18.
    M. D. Newton, Faraday Disc. Chem. Soc. 74 (1982) 95.Google Scholar
  20. 19.
    V. A. Zasukha and S. V. Volkov, Teor. Eksp. Khim. 18 (1982) 392.Google Scholar
  21. 20.
    S. I. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, Akademie-Verlag, Berlin, 1954.Google Scholar
  22. 21.
    A. M. Kuznetsov and J. Ulstrup, Faraday Disc. Chem. Soc. 74 (1982) 31.Google Scholar
  23. 22.
    A. M. Kuznetsov, Poverkhnost 9 (1982) 119.Google Scholar
  24. 23.
    A. M. Kuznetsov, Chem. Phys. Lett. 91 (1982) 34.Google Scholar
  25. 24.
    A. M. Kuznetsov, Khim. Fiz., 1 (1982) 1496.Google Scholar
  26. 25.
    A. I. Burshtein, G. K. Ivanov, and M. A. Kozhushner, Khim. Fiz., 1 (1982) 195.Google Scholar
  27. 26.
    A. M. Kuznetsov, Elektrokhimiya 19 (1983) 1596.Google Scholar
  28. 27.
    W. P. Jenks, Catalysis in Chemistry and Biochemistry, McGraw-Hill, New York, 1969.Google Scholar
  29. 28.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, 2nd Ed. Bell, London, 1969.Google Scholar
  30. 29.
    B. S. Brunschwig, C. Creutz, D. H. Macartney, T.-K. Sham, and N. Sutin, Faraday Disc. Chem. Soc. 74 (1982) 113.Google Scholar
  31. 30.
    S. U. M. Khan and J. O’M. Bockris, J. Res. Inst. CataL, Hokkaido Univ. 31 (1983) 35.Google Scholar
  32. 31.
    S. U. M. Khan and J. O’M. Bockris, J. Phys. Chem. 87 (1983) 4012.Google Scholar
  33. 32.
    E. D. German and A. M. Kuznetsov, Itogi Nauki i Tekhniki, Ser. Kinetika i Katalis, Vol. 10, VINITI, Moscow, 1982.Google Scholar
  34. 33.
    M. Bixon and J. Jortner, Faraday Disc. Chem. Soc. 74 (1982) 17.Google Scholar
  35. 34.
    P. Siders and R. A. Marcus, J. Am. Chem. Soc. 103 (1981) 748.Google Scholar
  36. 35.
    A. M. Kuznetsov and J. Ulstrup (in preparation).Google Scholar
  37. 36.
    R. R. Dogonadze, A. M. Kuznetsov, and V. G. Levich, Electrochim. Acta 13 (1968) 1025.Google Scholar
  38. 37.
    B. Fain, Theory of Rate Processes in Condensed Media, Springer-Verlag, Berlin 1980.Google Scholar
  39. 38.
    J. O’M. Bockris and S. U. M. Khan, Quantum Electrochemistry, Plenum Press, New York, 1979.Google Scholar
  40. 39.
    J. O’M. Bockris, S. U. M. Khan, and D. B. Matthews, J. Res. Inst. Catal., Hokkaido Univ. 22 (1974) 1.Google Scholar
  41. 40.
    R. R. Dogonadze, E. D. German, and A. M. Kuznetsov, J. Chem. Soc., Faraday Trans. 2 76 (1980) 1128.Google Scholar
  42. 41.
    R. R. Dogonadze, G. M. Chonishvili, and T. A. Marsagishvili, J. Chem. Soc., Faraday Trans. 2 80 (1984) 355.Google Scholar
  43. 42.
    E. D. German, R. R. Dogonadze, A. M. Kuznetsov, V. G. Levich, and Yu. I. Kharkats, Elektrokhimiya 6 (1970) 350.Google Scholar
  44. 43.
    R. P. Bell, J. Chem. Soc., Faraday Trans. 2 76 (1980) 954.Google Scholar
  45. 44.
    R. R. Dogonadze, A. M. Kuznetsov, and M. A. Vorotyntsev, Phys. Status Solidi B 54 (1972) 125, 425.Google Scholar
  46. 45.
    E. D. German and A. M. Kuznetsov, J. Chem. Soc., Faraday Trans. 2 77 (1981) 2203.Google Scholar
  47. 46.
    J. Sühnel and K. Gustav, Chem. Phys. 70 (1982) 109.Google Scholar
  48. 47a.
    V. L. Klochikhin, S. Ya. Pshezhetskii, and L. I. Trakhtenberg, Dokl. Akad. Nauk. SSSR 239 (1978) 879Google Scholar
  49. 47b.
    L. I. Trakhtenberg, Khim. Fiz. 1 (1982) 53.Google Scholar
  50. 48.
    A. M. Kuznetsov, Elektrokhimiya 22 (1986) 240.Google Scholar
  51. 49.
    M. M. Kreevoy, T. M. Liang, and K. C. Chang, J. Am. Chem. Soc. 99 (1977) 5207.Google Scholar
  52. 50.
    Yu. I. Kharkats and J. Ulstrup, J. Electroanal. Chem. 65 (1975) 555.Google Scholar
  53. 51.
    A. A. Ovchinnikov and V. A. Benderskii, J. Electroanal. Chem. 100 (1979) 563.Google Scholar
  54. 52.
    A. A. Ovchinnikov, V. A. Benderskii, S. D. Babenko, and A. G. Krivenko, J. Electroanal. Chem. 91 (1978) 321.Google Scholar
  55. 53.
    A. M. Kuznetsov, J. Electroanal. Chem. 151 (1983) 227.Google Scholar
  56. 54.
    A. M. Kuznetsov, J. Electroanal. Chem. 180 (1984) 121.Google Scholar
  57. 55.
    A. M. Kuznetsov, J. Electroanal. Chem. 159 (1983) 241.Google Scholar
  58. 56.
    J. P. Muscat and D. M. Newns, Prog. Surf. Sci. 9 (1978) 1.Google Scholar
  59. 57.
    J. R. Smith, Ed., Theory of Chemisorption, Springer-Verlag, Berlin, 1980.Google Scholar
  60. 58.
    L. I. Krishtalik, Charge Transfer Reactions. Electrochemical and Chemical Processes, Plenum Press, New York, 1984.Google Scholar
  61. 59.
    A. M. Kuznetsov and J. Ulstrup (in preparation).Google Scholar
  62. 60a.
    I. G. Medvedev, Elektrokhimiya 15 (1979) 713.Google Scholar
  63. 60b.
    I. G. Medvedev, Elektrokhimiya 15 (1979) 886.Google Scholar
  64. 61a.
    P. P. Schmidt, J. Chem. Soc. Faraday Trans. 2 80 (1984) 157.Google Scholar
  65. 61b.
    P. P. Schmidt, J. Chem. Soc. Faraday Trans. 2 80 (1984), 181.Google Scholar
  66. 62.
    C. P. Flynn and A. M. Stoneham, Phys. Rev. B 1 (1970) 3966.Google Scholar
  67. 63.
    H. Teichler, Phys. Status Solidi B 104 (1981) 239.Google Scholar
  68. 64.
    Yu. Kagan and M. I. Klinger, Sov. Phys.—J. Exp. Theor. Phys. 43 (1976) 132.Google Scholar
  69. 65.
    G. K. Ivanov and M. A. Kozhushner, Khim. Fiz. 2 (1983) 1299.Google Scholar
  70. 66.
    W. Kuhn and M. Wagner, Phys. Rev. B 23 (1981) 685.Google Scholar
  71. 67.
    A. M. Kuznetsov, Elektrokhimiya 21 (1985) 836.Google Scholar
  72. 68.
    G. K. Ivanov and M. A. Kozhushner, Fiz. Tverd. Tela 20 (1978) 9.Google Scholar
  73. 69.
    A. M. Kuznetsov, Elektrokhimiya 22 (1986) 291.Google Scholar
  74. 70.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965.Google Scholar
  75. 71.
    E. D. German and R. R. Dogonadze, Dokl. Akad. Nauk SSSR 210 (1973) 377.Google Scholar
  76. 72.
    E. D. German and A. M. Kuznetsov J. Chem. Soc. Faraday Trans. 2 82 (1986) 1885.Google Scholar
  77. 73.
    H. A. Kramers, Physica 7 (1940) 284.Google Scholar
  78. 74.
    I. V. Alexandrov, Teor. Eksp. Khim. 16 (1980) 435.Google Scholar
  79. 75.
    A. I. Shushin, Teor. Eksp. Khim. 17 (1981) 3.Google Scholar
  80. 76.
    A. M. Kuznetsov, Elektrokhimiya 7 (1971) 1067.Google Scholar
  81. 77.
    L. D. Zusman, Teor. Eksp. Khim. 15 (1979) 227.Google Scholar
  82. 78.
    M. Ya. Ovchinnikova, Teor. Eksp. Khim. 17 (1981) 651.Google Scholar
  83. 79.
    V. K. Bykhovskii, E. E. Nikitin, and M. Ya. Ovchinnikova, Sov. Phys.—J. Exp. Theor. Phys. 47 (1964) 750.Google Scholar
  84. 80.
    M. A. Vorotyntsev, R. R. Dogonadze, and A. M. Kuznetsov, Vestn. Mosk. Gos. Univ., Ser. Phys., no. 2 (1973) 224.Google Scholar
  85. 81.
    P. G. Wolynes, Phys. Rev. Lett. 47 (1981) 968.Google Scholar
  86. 82.
    A. I. Larkin and Yu. N. Ovchinnikov, Pis’ma Zh. Eksp. Teor. Fiz. 37 (1983) 322.Google Scholar
  87. 83.
    V. Melnikov and A. Siito, J. Phys. C: Solid State Phys. 17 (1984) L207.Google Scholar
  88. 84a.
    T. P. Sethna, Phys. Rev. B 24 (1981) 698Google Scholar
  89. 84a.
    T. P. Sethna, Phys. Rev. B 25 (1982) 5050.Google Scholar
  90. 85.
    A. M. Kuznetsov, Elektrokhimiya 20 (1984) 1233.Google Scholar
  91. 86.
    R. J. Glauber, in Coherent States in Quantum Theory, Mir, Moscow, 1972, p. 26.Google Scholar
  92. 87.
    H. Frauenfelder and P. G. Wolynes, Science 229 (1985) 337.Google Scholar
  93. 88.
    L. D. Zusman, Chem. Phys. 80 (1983) 29.Google Scholar
  94. 89.
    L. D. Zusman, Chem. Phys. 49 (1980) 295.Google Scholar
  95. 90.
    A. B. Helman, Chem. Phys. 65 (1982) 271.Google Scholar
  96. 91.
    I. V. Alexandrov and V. I. Goldanskii, Khim. Fiz. 3 (1984) 185.Google Scholar
  97. 92.
    B. L. Tembe, H. L. Friedman, and M. D. Newton, J. Chem. Phys. 76 (1982) 1490.Google Scholar
  98. 93.
    T. Fonseca, J. A. N. F. Gomes, P. Grigolini, and F. Marchesoni, J. Chem. Phys. 80 (1984) 1826.Google Scholar
  99. 94.
    E. Marechal and M. Moreau, Mol. Phys. 51 (1984) 133.Google Scholar
  100. 95.
    K. Schulten, Z. Schulten, and A. Szabo, J. Chem. Phys. 74 (1981) 4426.Google Scholar
  101. 96.
    B. Carmeli and A. Nitzan, J. Chem. Phys. 80 (1984) 3596.Google Scholar
  102. 97a.
    R. F. Grote and J. T. Hynes, J. Chem. Phys. 74 (1981) 4465Google Scholar
  103. 97b.
    R. F. Grote and J. T. Hynes, J. Chem. Phys. 75 (1981) 2191Google Scholar
  104. 97c.
    R. F. Grote and J. T. Hynes, J. Chem. Phys. 76 (1981) 2715Google Scholar
  105. 97d.
    R. F. Grote and J. T. Hynes, J. Chem. Phys. 77 (1982) 3736.Google Scholar
  106. 98.
    J. L. Skinner and P. G. Wolynes, J. Chem. Phys. 69 (1978) 2143.Google Scholar
  107. 99a.
    G. van der Zwan and J. T. Hynes, J. Chem. Phys. 76 (1982) 2993Google Scholar
  108. 99a.
    G. van der Zwan and J. T. Hynes, J. Chem. Phys. 77 (1982) 1295.Google Scholar
  109. 100.
    D. P. Ali and W. H. Miller, Chem. Phys. Lett. 105 (1984) 501.Google Scholar
  110. 101.
    B. Carmeli and A. Nitzan, Phys. Rev. A 29 (1984) 1481.Google Scholar
  111. 102.
    Y. Kayanuma, J. Phys. Soc. Jpn. 53 (1984) 108.Google Scholar
  112. 103.
    M. V. Basilevsky and V. M. Ryaboy, Mol. Phys. 44 (1981) 785.Google Scholar
  113. 104.
    J. Brickmann, Ber. Bunsenges., Phys. Chem. 85 (1981) 106.Google Scholar
  114. 105.
    W. A. Wassam, Jr. and J. H. Freed, J. Chem. Phys. 76 (1982) 6133.Google Scholar
  115. 106.
    W. A. Wassam, Jr. and J. H. Freed, J. Chem. Phys. 76 (1982) 6150.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. M. Kuznetsov
    • 1
  1. 1.A. N. Frumkin Institute for ElectrochemistryAcademy of Sciences of the USSRMoscow V-71USSR

Personalised recommendations