Infrared Spectroscopy of Adsorbates on Metals: Direct Absorption and Emission

  • P. L. Richards
  • R. G. Tobin
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Measurements of the vibrational spectra of monolayers or submono-layers of adsorbates on surfaces present a severe challenge to the infrared spectroscopist. In many cases, multiple surfaces cannot be used and small signals must be measured that are superimposed on background radiation that can be many orders of magnitude stronger. To be successful, an experiment must be both well conceived and well executed. The conventional approaches are transmittance and reflection-absorption spectroscopy. Hoffmann(1) and Ryberg(2) have reviewed the reflection-absorption technique. Many approaches have been used to enhance the size of the surface signal relative to the backgrounds. These include multiple reflection,(3,4) attenuated total internal reflection,(5) surface electromagnetic waves,(6) and Stark modulation,(7) as well as direct measurements of absorption and emission.


Storage Ring Silver Film Infrared Emission Thermal Source Direct Absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. M. Hoffmann, Infrared reflection-absorption spectroscopy of adsorbed molecules, Surf. Sei. Rep. 3, 107–192 (1983).CrossRefGoogle Scholar
  2. 2.
    R. Ryberg, Infrared spectroscopy of adsorbed molecules: Some experimental aspects, J. Phys. (Paris) Coll. 44, CIO-421–426 (1983).Google Scholar
  3. 3.
    R. G. Greenier, Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface, J. Chem. Phys. 50, 1963–1968 (1969).CrossRefGoogle Scholar
  4. 4.
    J. F. Blanke and J. Overend, Infrared spectroscopy of surface species; emission spectra from a semi-blackbody, Spectrochim. Acta 32A, 1383–1386 (1976).Google Scholar
  5. 5.
    Y. J. Chabal, Hydrogen vibration on Si(111)7 × 7: Evidence for a unique chemisorp-tion site, Phys. Rev. Lett. 50, 1850–1853 (1983).CrossRefGoogle Scholar
  6. 6.
    Y. J. Chabal and A. J. Sievers, High-resolution infrared study of hydrogen (1 × 1) on tungsten (100), Phys. Rev. Lett. 44, 944–947 (1980).CrossRefGoogle Scholar
  7. 7.
    D. K. Lambert, Observation of the first order Stark effect of CO on Ni(110), Phys. Rev. Lett. 50, 2106–2109 (1983).CrossRefGoogle Scholar
  8. 8.
    F. M. Hoffmann and A. M. Bradshaw, Infrared spectroscopy of CO adsorbed on palladium (100) and (111) surfaces, in: Proceedings Third International Conference on Solid Surfaces, (Vienna, 1977), pp. 1167–1170.Google Scholar
  9. 9.
    W. G. Golden, D. S. Dunn, and J. Overend, A method for measuring infrared reflection-absorption spectra of molecules adsorbed on low-area surfaces at monolayer and submonolayer concentrations, J. Catal. 71, 395–404 (1981).CrossRefGoogle Scholar
  10. 10.
    R. Ryberg, Carbon monoxide adsorbed on Cu(100) studied by infrared spectroscopy, Surf. Sci. 114, 627–641 (1982), and references therein.CrossRefGoogle Scholar
  11. 11.
    D. P. Woodruff, B. E. Hayden, K. Prince, and A. M. Bradshaw, Dipole coupling and chemical shifts in IRAS of CO adsorbed on Cu(110), Surf. Sci. 123, 397–412 (1982).CrossRefGoogle Scholar
  12. 12.
    W. G. Golden, D. D. Saperstein, M. W. Severson, and J. Overend, Infrared reflection-absorption spectroscopy of surface species: a comparison of Fourier transform and dispersion methods, J. Phys. Chem. 88, 574–580 (1984).CrossRefGoogle Scholar
  13. 13.
    W. B. Jackson, N. M. Amer, A. C. Boceara, and D. Fournier, Photothermal deflection spectroscopy and detection, Appl. Opt. 20, 1333–1344 (1981).CrossRefGoogle Scholar
  14. 14.
    C. K. N. Patel and A. C. Tarn, Pulsed photoacoustic spectroscopy of condensed matter, Rev. Mod. Phys. 53, 517–550 (1981).CrossRefGoogle Scholar
  15. 15.
    A. Otto, in: Light Scattering in Solids (M. Cardona and G. Guntherolt, eds.), Vol. 4, pp. 289–418, Springer, Berlin (1984), and references therein.Google Scholar
  16. 16.
    Y. R. Shen, in: Novel Materials and Techniques in Condensed Matter (G. W. Crabtree and P. Vashista, eds.), pp. 193–208, Elsevier (1982), and references therein.Google Scholar
  17. 17.
    A. Mooradian, Tunable infrared lasers, Rep. Prog. Phys. 42, 1533–1564 (1979).CrossRefGoogle Scholar
  18. 18.
    C. K. N. Patel, The Free Electron Laser, National Academy Press, Washington, D.C. (1982).Google Scholar
  19. 19.
    S. Silver, Microwave antenna theory and design, pp. 50–51, McGraw-Hill, New York (1949).Google Scholar
  20. 20.
    Kwang-Je Kim, private communication.Google Scholar
  21. 21.
    W. D. Duncan and G. P. Williams, Infrared synchrotron radiation from electron storage rings, Appl. Opt. 22, 2914–2923 (1983).CrossRefGoogle Scholar
  22. 22.
    E. H. Putley, Solid state devices for infra-red detection, J. Sci. Instrum. 43, 857–868 (1966).CrossRefGoogle Scholar
  23. 23.
    M. R. Hueschen, P. L. Richards, and E. E. Haller, Performance of Ge:Ga far infrared detectors, Proceedings of the NASA Infrared Detector Technology Workshop (August 1983), p. 3–1.Google Scholar
  24. 24.
    E. L. Dereniak, R. R. Joyce, and R. W. Capps, Low noise preamplifier for photoconductive detectors, Rev. Sci. Instrum. 48, 392–394 (1977).CrossRefGoogle Scholar
  25. 25.
    F. J. Low, Integrating amplifiers using cooled JFETS, Appl. Opt. 23, 1309–1310 (1984).CrossRefGoogle Scholar
  26. 26.
    P. L. Richards and L. T. Greenberg, in: Infrared and Millimeter Waves (K. J. Button, ed.), Vol. 6, pp. 149–207, Academic, New York (1982).Google Scholar
  27. 27.
    N. S. Nishioka, P. L. Richards, and D. P. Woody, Composite bolometers for submillimeter wavelengths, Appi. Opt. 17, 1562–1567 (1978).CrossRefGoogle Scholar
  28. 28.
    A. E. Lange, E. Kreysa, S. E. McBride, and P. L. Richards, Improved fabrication techniques for infrared bolometers, Int. J. Infrared Millimeter Waves 4, 689–706 (1983).CrossRefGoogle Scholar
  29. 29.
    R. J. Bell, Introductory Fourier Transform Spectroscopy, Academic, New York (1972).Google Scholar
  30. 30.
    N. P. Palaio, M. Rodder, E. E. Haller, and E. Kreysa, Neutron transmutation-doped germanium bolometers, Int. J. Infrared Millimeter Waves 4, 933–943 (1983).CrossRefGoogle Scholar
  31. 31.
    F. J. Low and A. R. Hoffman, The detectivity of cryogenic bolometers, Appl. Opt. 2, 649–650 (1963).CrossRefGoogle Scholar
  32. 32.
    C. Kittel and H. Kroemer, Thermal Physics, W. H. Freeman, San Francisco (1980).Google Scholar
  33. 33.
    R. B. Bailey, T. Iri, and P. L. Richards, Infrared spectra of carbon monoxide on evaporated nickel films: A low temperature thermal detection technique, Surf Sci. 180, 626–646 (1980).CrossRefGoogle Scholar
  34. 34.
    J. C. Burgiel and L. C. Hebel, Far infrared spin and combination resonance in bismuth, Phys. Rev. 140, A925–A929 (1965).CrossRefGoogle Scholar
  35. 35.
    H. E. Grenga, K. R. Lawless, and L. B. Garmon, Structure and topography of monocrystalline nickel thin films grown by vapor deposition, J. Appl. Phys. 42, 3629–3633 (1971).CrossRefGoogle Scholar
  36. 36.
    J. Kleefeld, B. Pratt, and A. A. Hirsch, Epitaxial growth of nickel from the vapour phase, J. Crystal. Growth 19, 141–146 (1973).CrossRefGoogle Scholar
  37. 37.
    Stycast 2850 GT, Emerson and Cuming Co., Canton, Massachusetts.Google Scholar
  38. 38.
    P. Dumas, R. G. Tobin, and P. L. Richards, Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy, I. Silver, Surf. Sci. 171, 555–578 (1986).CrossRefGoogle Scholar
  39. 39.
    P. Dumas, R. G. Tobin, and P. L. Richards, Study of adsorption states and interactions of CO on evaporated noble metal surfaces by infrared absorption spectroscopy, II. Gold and copper, Surf Sci. 171, 579–599 (1986).CrossRefGoogle Scholar
  40. 40.
    S. Klause, C. Mariani, K. C. Prince, and K. Horn, Screening effects in photoemission from weakly bound adsorbates: CO on Ag(110), Surf Sci. 138, 305–318 (1984).CrossRefGoogle Scholar
  41. 41.
    A. Crossley and D. A. King, Adsorbate island dimensions and interaction energies from vibrational spectra: CO on Pt{001} and Pt{lll}, Surf Sci. 95, 131–155 (1980).CrossRefGoogle Scholar
  42. 42.
    A. Crossley and D. A. King, Infrared spectra for CO isotopes chemisorbed on Pt{111}: evidence for strong adsorbate coupling interactions, Surf Sci. 68, 528–538 (1977).CrossRefGoogle Scholar
  43. 43.
    R. M. Hammaker, S. A. Francis, and R. P. Eischens, Infrared study of intermolecular interactions for carbon monoxide chemisorbed on platinum, Spectrochim. Acta 21, 1295–1309 (1965).CrossRefGoogle Scholar
  44. 44.
    B. N. J. Persson and R. Ryberg, Vibrational interaction between molecules adsorbed on a metal surface: The dipole-dipole interaction, Phys. Rev. B 24, 6954–6970 (1981).CrossRefGoogle Scholar
  45. 45.
    M. Moskovits and J. E. Hulse, Frequency shifts in the spectra of molecules adsorbed on metals, with emphasis on the infrared spectrum of adsorbed CO, Surf Sci. 78, 397–418 (1978).CrossRefGoogle Scholar
  46. 46.
    P. Geraghty, M. Wixom, and A. H. Francis, Photocalorimetric spectroscopy and ac calorimetry of thin surface films, J. Appl. Phys. 55, 2780–2785 (1984).CrossRefGoogle Scholar
  47. 47.
    S. Chiang, R. G. Tobin, and P. L. Richards, Vibrational spectroscopy of chemisorbed molecules by infrared emission, J. Vac. Sci. Technol. A 2, 1069–1074 (1984).CrossRefGoogle Scholar
  48. 48.
    P. R. Griffiths, Chemical Infrared Fourier Transform Spectroscopy, Wiley, New York (1975).Google Scholar
  49. 49.
    D. Kember and N. Sheppard, The use of ratio-recording interferometry for the measurement of infrared emission spectra: applications to oxide films on copper surfaces, Appl. Spectrosc, 29, 496–500 (1975).CrossRefGoogle Scholar
  50. 50.
    L. M. Gratton, S. Paglia, F. Scattaglia, and M. Cavallini, Infrared emission spectroscopy applied to the oxidation of molybdenum, Appl. Spectrosc. 32, 310–316 (1978).CrossRefGoogle Scholar
  51. 51.
    M. Adachi, K. Kishi, T. Imanaka, and S. Teranishi, Infrared emission spectra of formic acid adsorbed on V2O5, Bull. Chem. Soc. Jpn 40, 1290–1292 (1967).CrossRefGoogle Scholar
  52. 52.
    O. Koga, T. Onishi, and K. Tamaru, Infrared emission spectra of formic acid adsorbed on alumina, J. Chem. Soc. Chem. Commun., 464 (1974).Google Scholar
  53. 53.
    M. Primet, P. Fouilloux, and B. Imelik, Propene-V2O5 interactions studied by infrared emission spectroscopy, Surf. Sci. 85, 457–470 (1979).CrossRefGoogle Scholar
  54. 54.
    M. Primet, P. Fouilloux, and B. Imelik, Chemisorptive properties of platinum supported on zeolite Y studied by infrared emission spectroscopy, J. Catal. 61, 553–558 (1980).CrossRefGoogle Scholar
  55. 55.
    D. L. Aliara, D. Teicher, and J. F. Durana, Fourier transform infrared emission spectrum of a molecular monolayer at 300 K, Chem. Phys. Lett. 84, 20–24 (1981).CrossRefGoogle Scholar
  56. 56.
    JFET 00, Infrared Laboratories, Inc., Tucson, Arizona.Google Scholar
  57. 57.
    L. Harris and J. K. Beasley, The infrared properties of gold smoke deposits, J. Opt. Soc. Am. 42, 134–140 (1952).CrossRefGoogle Scholar
  58. 58.
    L. Harris, The transmittance and reflectance of gold black deposits in the 15- to 100-micron region, J. Opt. Soc. Am. 51, 80–82 (1961).CrossRefGoogle Scholar
  59. 59.
    L-51 Taut band chopper, Bulova Watch Co., Woodside, N.Y.Google Scholar
  60. 60.
    H. Ibach, Comparison of cross sections in high resolution electron energy loss spectroscopy and infrared reflection spectroscopy, Surf. Sci. 66, 56–66 (1977).CrossRefGoogle Scholar
  61. 61.
    R. G. Tobin, S. Chiang, P. A. Thiel, and P. L. Richards, The C=0 stretching vibration of CO on Ni(100) by infrared emission spectroscopy, Surf. Sci. 140, 393–399 (1984).CrossRefGoogle Scholar
  62. 62.
    S. Chiang, R. G. Tobin, P. L. Richards, and P. A. Thiel, The molecule-substrate vibration of CO on Ni(100) studied by infrared emission spectroscopy, Phys. Rev. Lett. 52, 648–651 (1984).CrossRefGoogle Scholar
  63. 63.
    R. G. Tobin and P. L. Richards, An infrared emission study of the molecule-substrate mode of CO on Pt(111), Surf. Sci. 179, 387–403 (1987).CrossRefGoogle Scholar
  64. 64.
    J. C. Ariyasu, D. L. Mills, K. G. Lloyd, and J. C. Hemminger, Anharmonic damping of adsorbate vibrational modes, Phys. Rev. B 28, 6123–6126 (1984).CrossRefGoogle Scholar
  65. 65.
    M. J. Dignam, in: Vibrations at Surfaces: Proceedings of an International Conference at Namur, Belgium (R. Caudano, J. M. Gilles, and A. A. Lucas, eds.), pp. 265–288, Plenum Press, New York (1982).Google Scholar
  66. 66.
    J. C. Tracy, Structural influences on adsorption energy. II. CO on Ni(100), J. Chem. Phys. 56, 2736–2747 (1972).CrossRefGoogle Scholar
  67. 67.
    G. E. Mitchell, J. L. Gland, and J. M. White, Vibrational spectra of coadsorbed CO and H on Ni(100), Surf. Sci. 131, 167–178 (1983).CrossRefGoogle Scholar
  68. 68.
    S. Andersson, Vibrational excitations and structure of CO adsorbed on Ni(100), Solid State Commun. 21, 75–81 (1977).CrossRefGoogle Scholar
  69. 69.
    J. C. Bertolini and B. Tardy, Vibrational EELS studies of CO chemisorption on clean and carbided (111), (100), and (110) nickel surfaces, Surf. Sci. 102, 131–150 (1981).CrossRefGoogle Scholar
  70. 70.
    M. Trenary, K. J. Uram, F. Bozso, and J. T. Yates, Jr., Temperature dependence of the vibrational lineshape of CO chemisorbed on the Ni(111) surface, Surf. Sci. 146, 269–280 (1984).CrossRefGoogle Scholar
  71. 71.
    B. N. J. Persson and R. Ryberg, Vibrational phase relaxation at surfaces: CO on Ni(lll), Phys. Rev. Lett. 54, 2119–2122 (1985).CrossRefGoogle Scholar
  72. 72.
    B. E. Hayden and A. M. Bradshaw, The adsorption of CO on Pt(lll) studied by infrared reflection-absorption spectroscopy, Surf. Sci. 125, 787–802 (1983).CrossRefGoogle Scholar
  73. 73.
    C. R. McCreight, Two-dimensional infrared detector arrays, Proc. IAU Colloq. 79, 585–602 (1984).Google Scholar
  74. 74.
    D.M. Rank, Astronomical applications of IR CID technology, final report, NADA CR 166–584 (1984).Google Scholar
  75. 75.
    T. J. Chuang, Infrared chemiluminescence from XeF2-silicon-surface reactions, Phys. Rev. Lett. 42, 815–817 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • P. L. Richards
    • 1
  • R. G. Tobin
    • 1
  1. 1.Department of PhysicsUniversity of California, and Materials and Molecular Research Division, Lawrence Berkeley LaboratoryBerkeleyUSA

Personalised recommendations