Raman Spectroscopy

  • Alan Campion
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Raman spectroscopy as a probe of surface structure and dynamics is still developing its power and potential. The Raman process itself — inelastic light scattering by molecular vibrations—is inherently weak. Only a small fraction, 10-6 or so, of the photons incident on a sample are Raman scattered. Thus it might appear that the application of such an intrinsically inefficient process to the detection of a small number of molecules would not be very productive.


Raman Spectroscopy Polarizability Tensor Surface Enhance Raman Spectroscopy Raman Cross Section Surface Enhance Raman Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Van Duyne, in: Chemical and Biochemical Application of Lasers (C. B. Moore, ed.), Vol. IV, pp. 101–185, Academic, New York (1978).Google Scholar
  2. 2.
    Surface Enhanced Raman Scattering (R. K. Chang and T. E. Furtak, eds.), Plenum Press, New York (1982).Google Scholar
  3. 3.
    A. Otto, in: Light Scattering in Solids (M. Cardona and G. Güntherodt, eds.), Vol. IV, pp. 289–418, Springer-Verlag, Berlin (1984).Google Scholar
  4. 4.
    H. Metiu, Surface enhanced spectroscopy, Prog. Surf. Sci. 17, 153 (1984).CrossRefGoogle Scholar
  5. 5.
    A. Campion, Surface enhanced Raman spectroscopy, Comments Solid State Phys. 11, 107–123 (1984).Google Scholar
  6. 6.
    A. Campion, J. K. Brown, and V. M. Grizzle, Surface Raman spectroscopy without enhancement: nitrobenzene on Ni(lll), Surf Sci. 115, L153-L158 (1982).CrossRefGoogle Scholar
  7. 7.
    D. A. Long, Raman Spectroscopy, McGraw-Hill, New York (1977).Google Scholar
  8. 8.
    R. S. Tobias, Raman spectroscopy in inorganic chemistry, J. Chem. Ed. 44, 1–8 (1967).CrossRefGoogle Scholar
  9. 9.
    R. G. Greenler and T. C. Slager, Method for obtaining the Raman spectrum of a thin film on a metal surface, Spectrochim. Acta 29A, 193–201 (1973).Google Scholar
  10. 10.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).Google Scholar
  11. 11.
    American Institute of Physics Handbook, 3rd ed., pp. 6.124–6.155, McGraw-Hill, New York (1972).Google Scholar
  12. 12.
    J. D. E. McIntyre and D.E. Aspnes, Differential reflection spectroscopy of very thin surface films, Surf Sci. 24, 417–434 (1971).CrossRefGoogle Scholar
  13. 13.
    P. J. Feibelman, Surface electromagnetic EELS, Prog. Surf. Sci. 12, 287–406 (1982).CrossRefGoogle Scholar
  14. 14.
    D. R. Mullins, Surface Raman Spectroscopy. Investigations on Smooth, Stepped and Kinked Crystal Surfaces and Angular Resolution Studies, Ph.D. dissertation, The University of Texas at Austin (1984).Google Scholar
  15. 15.
    Ph. Avouris and J.E. Demuth, Electronic excitations of benzene, pyridine and pyrazine adsorbed on Ag(111), J. Chem. Phys. 75, 4783–4794 (1981).CrossRefGoogle Scholar
  16. 16.
    M. Moskovits, Surface selection rules, J. Chem. Phys. 77, 4408–4416 (1982).CrossRefGoogle Scholar
  17. 17.
    H. Nichols and R. M. Hexter, Site symmetry of surface adsorbed molecules, J. Chem. Phys. 75, 3126–3136 (1981).CrossRefGoogle Scholar
  18. 18.
    J. K. Sass, H. Neff, M. Moskovits, and S. Holloway, Electric field gradient effects on the spectroscopy of adsorbed molecules, J. Phys. Chem. 85, 621–623 (1981).CrossRefGoogle Scholar
  19. 19.
    F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds, Wiley, New York (1974).Google Scholar
  20. 20.
    P. J. Feibelman, private communication.Google Scholar
  21. 21.
    A. W. Dweydari and C. H. B. Mee, Work function measurements on (100) and (110) surfaces of silver, Phys. Status Solidi A 27, 223–230 (1975).CrossRefGoogle Scholar
  22. 22.
    V. M. Hallmark and A. Campion, Selection rules for surface Raman spectroscopy, J. Chem. Phys. 84, 2933 (1986).CrossRefGoogle Scholar
  23. 23.
    T. A. Egerton and A. H. Hardin, The application of Raman spectroscopy to surface chemical studies, Catal. Rev. Sci. Eng. 11, 71–116 (1975).CrossRefGoogle Scholar
  24. 24.
    R. P. Cooney, G. Curthoys, and N. T. Tarn, Laser Raman spectroscopy and its application to the study of adsorbed species, Adv. Catal. 24, 293–342 (1975).CrossRefGoogle Scholar
  25. 25.
    W. N. Delgas, G. Haller, R. Kellerman, and J. H. Lunsford, Spectroscopy in Heterogeneous Catalysis, pp. 58–85, Academic, New York (1979).CrossRefGoogle Scholar
  26. 26.
    R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, Mode-locked laser Raman spectroscopy—A new technique for the rejection of interfering background luminescence signals, Anal. Chem. 46, 213–222 (1974).CrossRefGoogle Scholar
  27. 27.
    F. R. Brown and L. E. Makovsky, Raman spectra of a cobalt oxide-molybdenum oxide supported catalyst, Appl. Spectrosc. 31, 44–46 (1977).CrossRefGoogle Scholar
  28. 28.
    C. P. Cheng, J. D. Ludowise, and G. L. Schrader, Controlled-atmosphere rotating cell for in situ studies of catalysts using laser Raman spectroscopy, Appl. Spectrosc. 34, 146–150 (1980).CrossRefGoogle Scholar
  29. 29.
    G. L. Schrader, private communication.Google Scholar
  30. 30.
    P. Hargis, private communication.Google Scholar
  31. 31.
    R. Hester, in: Raman Spectroscopy, Theory and Practice (H. A. Szymanski, ed.) Vol. 2, pp. 141–173, Plenum Press, New York (1970).CrossRefGoogle Scholar
  32. 32.
    A. Campion and N. Somers, unpublished results.Google Scholar
  33. 33.
    N. Zimmerer and W. Kiefer, Rotating surface scanning technique for Raman spectroscopy, Appl. Spectrosc. 28, 279–281 (1974).CrossRefGoogle Scholar
  34. 34.
    P. J. Hendra and E. J. Loader, Laser Raman spectra of adsorbed species, Trans. Faraday Soc. 67, 828–840 (1971).CrossRefGoogle Scholar
  35. 35.
    Y. Talmi and K. W. Busch, in: Multichannel Image Detectors (Y. Talmi, ed.), Vol. 2, American Chemical Society, Washington, D.C. (1983).CrossRefGoogle Scholar
  36. 36.
    K. Nishi, K. Chinomi, Y. Inoue, and S. Ikeda, X-ray photoelectron spectroscopic study of the absorption of benzene, pyridine and nitrobenzene on evaporated nickel and iron, J. Catal. 60, 228–240 (1979).CrossRefGoogle Scholar
  37. 37.
    C. Backyx, C. P. M. DeGroot, and P. Biloen, Electron energy loss spectroscopy and its applications, Appl. Surf. Sci. 6, 256–272 (1980).CrossRefGoogle Scholar
  38. 38.
    C.L. Angell, Raman spectroscopic investigation of zeolites and absorbed molecules, J. Phys. Chem. 77, 222–227 (1973).CrossRefGoogle Scholar
  39. 39.
    T. A. Egerton and A. H. Hardin, Raman spectra near 1000 cm-1 of pyridine adsorbed on a series of partially exchanged Y-zeolites, 47th National Colloid Symposium of the American Chemical Society, Ottowa (1973).Google Scholar
  40. 40.
    E. Buechler and J. Turkevich, Laser Raman spectroscopy of surfaces, J. Phys. Chem. 76, 2325–2332 (1972).CrossRefGoogle Scholar
  41. 41.
    W. Oganowski, J. Hanuza, B. Jezowska-Trzebiatowski, and J. Wrzyszcz, Physicochem-icall properties and structure of MgMoO4-MoO3 catalysts, J. Catal. 39, 161–172 (1975).CrossRefGoogle Scholar
  42. 42.
    F. R. Brown, L. E. Makovsky, and K. H. Rhee, Raman spectra of supported molybdena catalysts, J. Catal. 50, 162–171 (1977).CrossRefGoogle Scholar
  43. 43.
    J. Medema, C. Van Stam, V. H. J. deBeer, A. J. A. Konigs, and D. C. Koninsberger, Raman spectroscopic study of Co-Mo/y-Al2O3 catalysts, J. Catal. 53, 386–400 (1978).CrossRefGoogle Scholar
  44. 44.
    H. Jeziorowski and H. Knözinger, Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts, J. Phys. Chem. 83, 1166–1173 (1979).CrossRefGoogle Scholar
  45. 45.
    C. P. Cheng and G. L. Schrader, Characterization of supported molybdate catalysts during preparation using laser Raman spectroscopy, J. Catal. 60, 267–294 (1979).CrossRefGoogle Scholar
  46. 46.
    G. L. Schrader and C. P. Cheng, In situ laser Raman spectroscopy of the sulfiding of Mo/y-Al2O3 catalysts, J. Catal. 80, 365–385 (1983).CrossRefGoogle Scholar
  47. 47.
    G. L. Schrader and C. P. Cheng, Laser Raman spectroscopy of Co-Mo/y-Al2O3 catalysts, characterization using pyridine adsorption, J. Phys. Chem. 87, 3675–3681 (1983).CrossRefGoogle Scholar
  48. 48.
    G. L. Schrader and C. P. Cheng, Sulfiding of cobalt molybdate catalysts: Characterization by Raman spectroscopy, J. Catal. 85, 488–498 (1984).CrossRefGoogle Scholar
  49. 49.
    P. J. Hendra, J. R. Horder, and E. J. Loader, The Raman spectrum of pyridine adsorbed on oxide surfaces, J. Chem. Soc. A, 1766–1770 (1971).Google Scholar
  50. 50.
    T. A. Egerton, A. H. Hardin, Y. Kozirovski, and N. Sheppard, Reduction of fluorescences from high-area oxides of the silica, γ-alumina, silica-alumina and Y-zeolite types of Raman spectra for a series of molecules adsorbed on these surfaces, J. Catal 32, 343–361 (1974).CrossRefGoogle Scholar
  51. 51.
    R. O. Kagel, Raman spectra of pyridine and 2-chloropyridine adsorbed on silica gel, J. Phys. Chem. 74, 4518–4519 (1970).CrossRefGoogle Scholar
  52. 52.
    R. P. Cooney and N. T. Tam, The determination of the surface area of silica by laser Raman spectroscopy, Aust. J. Chem. 29, 507–513 (1976).CrossRefGoogle Scholar
  53. 53.
    P. J. Hendra and E. J. Loader, Laser Raman spectra of sorbed species: Physical adsorption on silica gel, Nature 216, 789–790 (1967).CrossRefGoogle Scholar
  54. 54.
    I. D. M. Turner, S. O. Paul, E. Reid, and P. J. Hendra, Laser-Raman study of the isomerization of olefins over alumina, J. Chem. Soc. Faraday Trans. I 72, 2829–2835 (1976).CrossRefGoogle Scholar
  55. 55.
    H. Winde, Zur ramanspektroskopischen Untersuchung sorbierter molekule, Z. Chem. 10, 64–67 (1970).CrossRefGoogle Scholar
  56. 56.
    W. Krasser, H. Ervens, A. Fadini, and A. J. Renouprez, Raman scattering of benzene and deuterated benzene chemisorbed on silica supported nickel, J. Raman Spectrosc. 9, 80–84 (1980).CrossRefGoogle Scholar
  57. 57.
    W. Krasser, Enhancement of Raman scattering by molecules adsorbed on small nickel particles, Proceeding VIIth International Conference on Raman Spectroscopy, pp. 420–421 (1980).Google Scholar
  58. 58.
    W. Krasser, A. Fadini, and A. J. Renouprez, The Raman spectrum of carbon monoxide chemisorbed on silica-supported nickel, J. Catal. 62, 94–98 (1968).CrossRefGoogle Scholar
  59. 59.
    M. Fleischman, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163–166 (1974).CrossRefGoogle Scholar
  60. 60.
    D. J. Jeanmaire and R. P. Van Duyne, Surface Raman spectroelectrochemistry, J. Electroanal. Chem. 84, 1–20 (1977).CrossRefGoogle Scholar
  61. 61.
    M. G. Albrecht and J. A. Creighton, Anomalougly intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc. 99, 5215–5217 (1977).CrossRefGoogle Scholar
  62. 62.
    T. E. Furtak and J. Reyes, A critical review of theoretical models of surface enhanced Raman scattering, Surf. Sci. 93, 351–382 (1980).CrossRefGoogle Scholar
  63. 63.
    J. G. Bergman, J. P. Heritage, A. Pinazuk, J. M. Worlock, and J. H. McFee, Cyanide coverage on silver in conjunction with surface-enhanced Raman scattering, Chem. Phys. Lett. 68, 412–415 (1979).CrossRefGoogle Scholar
  64. 64.
    Y. J. Chen, W. P. Chen, and E. Burstein, Surface-electromagnetic wave-enhanced Raman scattering by overlayers on metals, Phys. Rev. Lett. 36, 1207–1210 (1976).CrossRefGoogle Scholar
  65. 65.
    P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C. Tsang, K. Christmann, and J. A. Bradley, Surface-enhanced Raman scattering from pyridine on Ag(111), Phys. Rev. Lett. 45, 1519–1523 (1980).CrossRefGoogle Scholar
  66. 66.
    B. J. Messinger, K. V. VonRaben, R. K. Chang, and P. W. Barber, Local fields at the surface of noble metal minispheres, Phys. Rev. B 24, 649–657 (1981).CrossRefGoogle Scholar
  67. 67.
    M. Moskovits, private communication.Google Scholar
  68. 68.
    M. Meier and A. Wokaun, Enhanced fields on large metal particles: dynamic depolarization, Opt. Lett. 8, 581–583 (1983).CrossRefGoogle Scholar
  69. 69.
    P. Apell and D. R. Penn, Optical properties of small metal spheres: Surface effects, Phys. Rev. Lett. 50, 1316–1319 (1983).CrossRefGoogle Scholar
  70. 70.
    W. A. Kraus and G. C. Schatz, Plasmon resonance broadening in small metal particles, J. Chem. Phys. 79, 6130–6139 (1983).CrossRefGoogle Scholar
  71. 71.
    V. Laor and G. C. Schatz, The role of surface roughness in surface enhanced Raman spectroscopy (SERS): The importance of multiple plasmon resonances, Chem. Phys. Lett. 82, 566–570 (1981).CrossRefGoogle Scholar
  72. 72.
    M. Moskovits and D. P. DiLelle, in: Surface Enhanced Raman Scattering (R. K. Chang and T. E. Furtak, eds.) pp. 243–274, Plenum Press, New York (1982).CrossRefGoogle Scholar
  73. 73.
    T. Watanabe, N. Yanagihara, K. Honda, B. Pettinger, and L. Moerl, Chem. Phys. Lett 96, 649–655 (1983).CrossRefGoogle Scholar
  74. 74.
    T. E. Furtak, abstract, American Chemical Society 185th National Meeting, Seattle, Washington, March, 1983.Google Scholar
  75. 75.
    J. Billmann and A. Otto, Electronic surface state contribution to surface enhanced Raman scattering, Sol. State. Commun. 44, 105–108 (1982).CrossRefGoogle Scholar
  76. 76.
    J. J. McMahon, T. P. Dougherty, J. Riley, G. T. Babcock, and R. L. Carter, Surface enhanced Raman scattering and photodimerization of pyridyl substituted ethylenes at a silver electrode surface, Surf. Sci. 158, 381 (1985).CrossRefGoogle Scholar
  77. 77.
    B. N. J. Persson, On the theory of surface-enhanced Raman scattering, Chem. Phys. Lett. 82, 561–565 (1981).CrossRefGoogle Scholar
  78. 78.
    J. E. Demuth and P. N. Sanda, Observations of charge-transfer states for pyridine chemisorbed on Ag(lll), Phys. Rev. Lett. 47, 57–60 (1981).CrossRefGoogle Scholar
  79. 79.
    D. Schmeisser, J. E. Demuth, and Ph. Avouris, Metal-molecule charge transfer excitation on silver film, Chem. Phys. Lett. 87, 324–326 (1982).CrossRefGoogle Scholar
  80. 80.
    H. Ueba, Role of defect-induced charge transfer excitation in SERS, Surf. Sci. 129, L267-L270 (1983).CrossRefGoogle Scholar
  81. 81.
    A. Campion and D. R. Mullins, Normal Raman scattering from pyridine adsorbed on the low-index faces of silver, Chem. Phys. Lett. 54, 576–579 (1983).CrossRefGoogle Scholar
  82. 82.
    A. Campion and D. R. Mullins, Unenhanced Raman scattering from pyridine absorbed on stepped and kinked silver surfaces under ultrahigh vacuum, Surface Sci. 158, 263 (1985).CrossRefGoogle Scholar
  83. 83.
    C. J. Sandroff, S. Garoff, and K. P. Leung, Surface-enhanced Raman study of the solid/liquid interface, Chem. Phys. Lett. 96, 547–551 (1983).CrossRefGoogle Scholar
  84. 84.
    C. J. Sandroff, D. A. Weitz, J. C. Chung, and D. R. Herschbach, Charge transfer from tetrathiafulvalene to silver and gold surfaces studied by surface-enhanced Raman scattering, J. Phys. Chem. 87, 2127–2133 (1983).CrossRefGoogle Scholar
  85. 85.
    C. J. Sandroff and D. R. Herschbach, Surface enhanced Raman study of organic sulfides adsorbed on silver, J. Phys. Chem. 86, 3277–3279 (1982).CrossRefGoogle Scholar
  86. 86.
    R. E. Hester, K. Hutchinson, W. J. Albery, and A. R. Hillman, Raman spectroscopic studies of a thionene modified electrode, Proc. 9th International Conference on Raman Spectroscopy, p. 724 (1984).Google Scholar
  87. 87.
    H. Jeziorowski and B. Moser, Raman spectroscopic studies of the chemisorption of oxalic acid on copper oxide surfaces in aqueous media, Proc. 9th International Conference on Raman Spectroscopy, p. 726 (1984).Google Scholar
  88. 88.
    C. Pettenkofer, I. Pockrand, and A. Otto, Surface enhanced Raman spectra from oxygen on silver, J. Phys. (Paris) C 10, 463 (1983).Google Scholar
  89. 89.
    S. K. Miller, A. Baker, M. Meier, and A. Wokaun, Surface enhanced Raman scattering and the preparation of copper substrates for catalytic studies, J. Chem. Soc. Faraday Trans. I 80, 1305–1312 (1984).CrossRefGoogle Scholar
  90. 90.
    M. Moskovits and D. P. DiLella, in: Surface Enhanced Raman Scattering (R. K. Cheng and T. E. Furtak, eds.), pp. 243–274, Plenum Press, New York (1982).CrossRefGoogle Scholar
  91. 91.
    D. P. DiLella, R. R. Smardzewski, S. Goha, and P. A. Lund, Surface-enhanced Raman study of the catalytic decomposition of fluorobenzene on silver, Surf. Sci. 158, 295 (1985).CrossRefGoogle Scholar
  92. 92.
    R. P. Van Duyne, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Alan Campion
    • 1
  1. 1.Department of ChemistryUniversity of Texas at AustinAustinUSA

Personalised recommendations