Electron Energy Loss Spectroscopy

  • Neil R. Avery
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Before embarking on this chapter it is worth reflecting on the current status of the spectroscopic methods, and in particular electron spectroscopy, in modern surface science, and in so doing show why high-resolution electron energy loss spectroscopy (EELS) for the vibrational analysis of adsorbed molecules is already and will become increasingly the technique to open up a new understanding of surface science in general and surface chemistry in particular.


Dispersion Compensation Elastic Peak Electron Energy Loss Spectroscopy Spectrum Electrostatic Lens Incident Beam Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Little, Infrared Spectra of Adsorbed Species, Academic, New York (1966).Google Scholar
  2. 2.
    F. M. Probst and T. C. Piper, Detection of vibrational states of gases adsorbed on tungsten by low-energy electron scattering, J. Vac. Sci. Techol. 4, 53–56 (1967).CrossRefGoogle Scholar
  3. 3.
    H. Froitzheim and H. Ibach, Interband transitions in zinc oxide observed by low-energy electron spectroscopy, Z. Phys. 269, 17–22 (1974).CrossRefGoogle Scholar
  4. 4.
    H. Froitzheim, H. Ibach, and S. Lehwald, Reduction of spurious background peaks in electron spectrometers, Rev. Sci. Instrum. 46, 1325–1328 (1975).CrossRefGoogle Scholar
  5. 5.
    C. E. Kuyatt, and J. A. Simpson, Electron monochromator design, Rev. Sci. Instrum. 38, 103–111 (1967).CrossRefGoogle Scholar
  6. 6.
    W. Steckelmacher, Energy analysers for charged particles, J. Phys. E 6, 1061–1071 (1973).CrossRefGoogle Scholar
  7. 7.
    F. H. Read, J. Comer, R. E. Imhof, J. N. H. Brunt, and E. Harting, The optimization of electrostatic energy selection systems for low energy electrons, J. Electron. Spectrosc. Relat. Phenom. 4, 293–312 (1974).CrossRefGoogle Scholar
  8. 8.
    H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York (1982).Google Scholar
  9. 9.
    D. Roy and J. D. Carette, Design of electron spectrometers for surface analysis, in: Electron Spectroscopy for Surface Analysis (H. Ibach, ed.), Chap. 2, pp. 13–58, Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  10. 10.
    S. Andersson, Surface vibrations of oxygen and sulphur on Ni, Surf. Sci. 79, 385–393 (1979).CrossRefGoogle Scholar
  11. 11.
    B. A. Sexton, High resolution electron energy loss spectrometer for vibrational surface studies, J. Vac. Sci. Technol. 16, 1033–1036 (1979).CrossRefGoogle Scholar
  12. 12.
    L. L. Kesmodel, New high resolution electron spectrometer for surface vibrational analysis, J. Vac. Sci. Technol. A 1, 1456–1460 (1983).CrossRefGoogle Scholar
  13. 13.
    G. E. Thomas and W. H. Weinberg, Versatile electron spectrometer for surface studies, Rev. Sci. Instrum. 50, 497–501 (1979).CrossRefGoogle Scholar
  14. 14.
    N. R. Avery, Vibrational spectroscopy of CO adsorbed on a Pt(111) surface, Appl. Surf. Sci. 13, 171–179 (1982).CrossRefGoogle Scholar
  15. 15.
    P. Thiry, J. J. Pireaux, and R. Caudona, A. versatile electron spectrometer for the study of solid surfaces, Phys. Mag. 4, 35–47 (1981).Google Scholar
  16. 16.
    S. D. Kevan and L. H. Dubois, Development of dispersion compensation for use in high-resolution electron-energy-loss spectroscopy, Rev. Sci. Instrum. 55, 1604–1612 (1984).CrossRefGoogle Scholar
  17. 17.
    S. Lewhald, H. Ibach, and J. E. Demuth, Vibration spectroscopy of benzene adsorbed on Pt(111) and Ni(111), Surf. Sci. 78, 577–590 (1978).CrossRefGoogle Scholar
  18. 18.
    W. Ho, Time resolved electron energy loss spectroscopy of surface kinetics, J. Vac. Sci. Technol. A 3, 1432–1438 (1985).CrossRefGoogle Scholar
  19. 19.
    D. W. Turner, High resolution molecular photoelectron spectroscopy, Proc. R. Soc. London A307, 15–26 (1968).Google Scholar
  20. 20.
    M. E. Rudd, in Low Energy Electron Spectrometry (K. D. Sevier, ed.), Wiley-Interscience, New York, pp. 17–32 1972.Google Scholar
  21. 21.
    J. N. H. Brunt, F. H. Read, and G. C. King, The realization of high energy resolution using the hemispherical electrostatic energy selector in electron impact spectrometry, J. Phys. E 10, 134–139 (1977).CrossRefGoogle Scholar
  22. 22.
    H. Wollnik and H. Ewald, The influence of magnetic and electric fringe fields on the trajectories of charged particles, Nucl. Instrum. Methods 36, 93–104 (1965).CrossRefGoogle Scholar
  23. 23.
    E. Harting and F. H. Read, Electrostatic Lenses, Elsevier, New York (1967).Google Scholar
  24. 24.
    A. Adams and F. H. Read, Electrostatic cylinder lenses III: Three element asymmetric voltage lenses, J. Phys. E 5, 1500–155 (1972).Google Scholar
  25. 25.
    J. R. Pierce, Theory and Design of Electron Beams, Van Nostrand, New York (1954).Google Scholar
  26. 26.
    P. J. Bassett, T. E. Gallon, and M. Prutton, A high energy resolution Auger electron spectrometer using concentric hemispheres, J. Phys. E 5, 1008–1013 (1972).CrossRefGoogle Scholar
  27. 27.
    A. Lahman-Bennani and A. Dugult, Reduction of energy-loss “Ghost structures” observed in electrostatic deflection type electron analysers, J. Electron Spectrosc. Relat. Phenom. 18, 145–152 (1980).CrossRefGoogle Scholar
  28. 28.
    J. E. Katz, P. W. Davies, J. E. Crowell, and G. A. Somorjai, Design and construction of a high-stability, low-noise power supply for use with high-resolution electron loss spectrometers, Rev. Sci. Instrum. 53, 785–789 (1982).CrossRefGoogle Scholar
  29. 29.
    P. Feutner and D. Menzel, Simple ways to improve “flash desorption” measurements from single crystal surfaces, J. Vac. Sci. Technol. 17, 662–663 (1980).CrossRefGoogle Scholar
  30. 30.
    N. R. Avery, A EELS and TDS study of molecular oxygen desorption and decomposition on Pt(lll), Chem. Phys. Lett. 96, 371–373 (1983).CrossRefGoogle Scholar
  31. 31.
    N. R. Avery, Adsorption and reactivity of cyclopentane on Pt(111), Surf. Sci. 163, 357–368 (1985).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Neil R. Avery
    • 1
  1. 1.CSIRO Division of Materials ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations