Incoherent Inelastic Neutron Scattering: Vibrational Spectroscopy of Adsorbed Molecules on Surfaces

  • R. R. Cavanagh
  • J. J. Rush
  • R. D. Kelley
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Given the variety of laboratory-based, surface-sensitive vibrational spectroscopies, the need for an additional vibrational spectroscopy such as incoherent inelastic neutron scattering (IINS), which is based on a centralized user facility, may not be immediately obvious. In the absence of special capabilities or suitability for probing relevant classes of materials, it would be difficult to justify such experiments owing to both the expense and the limited accessibility of these facilities. However, the range of incident wavelengths (0.5–15.0 Å) and corresponding energies (0.8–300 meV) accessible with neutrons clearly distinguishes IINS from more conventional probes of molecular vibrations. In fact, incoherent inelastic neutron scattering embodies a number of attributes that make this reactor-based technique an often unique method for surface characterization and a powerful complement to other techniques.


Neutron Scattering Neutron Beam Vibrational Spectroscopy Inelastic Neutron Raney Nickel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering, Oxford University Press, Oxford (1971).Google Scholar
  2. 2.
    P. A. Egelstaff, Thermal Neutron Scattering, Academic, New York (1965).Google Scholar
  3. 3.
    G. E. Bacon, Neutron Scattering in Chemistry, Butterworths, London (1977).Google Scholar
  4. 4.
    J. J. Rush, in: Critical Evaluation of Chemical and Physical Structure Information, pp. 369–385, National Academy of Sciences, Washington, D.C. (1974).Google Scholar
  5. 5.
    J. A. Janik, in: The Hydrogen Bond III (P. Schuster, G. Zundel, and C. Sandorfy, eds.) pp. 891–936, North-Holland, Amsterdam (1976).Google Scholar
  6. 6.
    T. Springer, in: Dynamics of Solids and Liquids by Neutron Scattering (S. W. Lovesey and T. Springer, eds.) Topics in Current Physics, Vol. 3, 255–300, Springer-Verlag, New York (1977).Google Scholar
  7. 7.
    J. W. White, in: Dynamics of Solids and Liquids by Neutron Scattering (S. W. Lovesey and T. Springer, eds.) Topics in Current Physics, Vol. 3, pp. 197–254, Springer-Verlag, New York (1977).Google Scholar
  8. 8.
    D. K. Ross and P. L. Hall, in: Advanced Chemical Methods for Soil and Clay Minerals Research (J. W. Stucki and W. L. Banwart, eds.), pp. 93–168, D. Reidel, Dordrecht, (1980).CrossRefGoogle Scholar
  9. 9.
    P. L. Hall, in: Advanced Techniques for Clay Mineral Analysis (J. J. Fripiat, ed.), pp. 51–75, Elsevier, New York (1982).Google Scholar
  10. 10.
    J. Howard and T. C. Waddington, The observation of the normal modes of vibration of adsorbed species by inelastic neutron scattering spectroscopy, Appl. Surf. Sci. 2, 102–104 (1978).CrossRefGoogle Scholar
  11. 11.
    J. W. White, R. K. Thomas, T. Trewern, I. Marlow, and G. Bomchil, Neutron diffraction and inelastic scattering from adsorbed molecules, Surf. Sci. 76, 13–49 (1978).CrossRefGoogle Scholar
  12. 12.
    P. G. Hall and C. J. Wright, Neutron scattering from adsorbed molecules, surfaces, and intercalates, Chem. Phys. Solids Surf. 7, 89–117 (1978).CrossRefGoogle Scholar
  13. 13.
    R. K. Thomas, Neutron scattering from adsorbed systems, Prog. Solid State Chem. 14, 1–93 (1982).CrossRefGoogle Scholar
  14. 14.
    J. B. Parise and E.. Prince, The structure of cesium-exchanged zeolite-rho at 293 K and 493 K determined from high resolution neutron powder data, Mater. Res. Bull. 18, 841–852 (1983).CrossRefGoogle Scholar
  15. 15.
    J. B. Parise, L. Abrams, T. E. Gier, D. R. Corbin, J. D. Jorgensen, and E. Prince, Flexibility of the framework of zeolite rho. Structural variation from 11 to 573 K. A study using neutron powder diffraction data, J. Phys. Chem. 88, 2303–2307 (1984).CrossRefGoogle Scholar
  16. 16.
    A. H. Baston, J. A. Potton, M. V. Twigg, and C. J. Wright, Determination of particle-size distributions of heterogeneous catalysts on high-electron-density supports by neutron small-angle scattering: Dispersed nickel oxide on α-alumina, J. Catal. 71, 426–429 (1981).CrossRefGoogle Scholar
  17. 17.
    G. Kostorz, in: Threatise on Materials Science and Technology (G. Kostorz, ed.), Vol. 15, pp. 227–286, Academic, New York (1979).Google Scholar
  18. 18.
    J. W. White and C. G. Windsor, Neutron scattering—modern techniques and their scientific impact, Rep. Prog. Phys. 47, 707–765 (1984).CrossRefGoogle Scholar
  19. 19.
    R. Pynn, Neutron scattering instrumentation at reactor based installations, Rev. Sci. Instrum. 55, 837–848 (1984).CrossRefGoogle Scholar
  20. 20.
    R. R. Cavanagh, J. J. Rush, R. D. Kelley, and T. J. Udovic, Adsorption and decomposition of hydrocarbons on platinum black: Vibrational modes from NIS, J. Chem. Phys. 80, 3478–3484 (1984).CrossRefGoogle Scholar
  21. 21.
    R. D. Kelley, R. R. Cavanagh, and J. J. Rush, Coadsorption and reaction of H2 and CO on Raney nickel: Neutron vibrational spectroscopy, J. Catal. 83, 464–468 (1983).CrossRefGoogle Scholar
  22. 22.
    R. R. Cavanagh, R. D. Kelley, and J. J. Rush, Neutron vibrational spectroscopy of hydrogen and deuterium on Raney nickel, J. Chem. Phys. 77, 1540–1547 (1982).CrossRefGoogle Scholar
  23. 23.
    Manufacturers are identified in order to provide a complete description of experimental conditions; this identification is not intended as an endorsement by the National Bureau of Standards.Google Scholar
  24. 24.
    A. P. Bolton and R. L. Moss, in: Experimental Methods in Catalytic Research (R. B. Anderson and P. T. Dawson, eds.), Vol. II, pp. 1–91, Academic, New York (1976).Google Scholar
  25. 25.
    A. Renouprez, P. Fouilloux, and B. Moraweck, in: Growth and Properties of Metal Clusters (J. Bourdon, ed.), pp. 421–434, Elsevier, Amsterdam (1980).CrossRefGoogle Scholar
  26. 26.
    P. Fouilloux, The nature of Raney nickel, its adsorbed hydrogen and its catalytic activity for hydrogenation reactions (Review). Appl. Catal. 8, 1–42 (1983).CrossRefGoogle Scholar
  27. 27.
    H. Jobic and A. Renouprez, Neutron inelastic spectroscopy of benzene chemisorbed on Raney platinum, Surf. Sci. 111, 53–62 (1981).CrossRefGoogle Scholar
  28. 28.
    J. Howard, T. C. Waddington, and C. J. Wright, Low frequency dynamics of hydrogen adsorped upon a platinum surface, J. Chem. Phys. 64, 3897–3898 (1976).CrossRefGoogle Scholar
  29. 29.
    J. Howard, T. C. Waddington, and C. J. Wright, The vibrational spectrum of hydrogen adsorbed on palladium black using inelastic neutron scattering spectroscopy, Chem. Phys. Lett. 56, 258–262 (1978).CrossRefGoogle Scholar
  30. 30.
    J. J. Rush, R. R. Cavanagh, R. D. Kelley, and J. M. Rowe, Interaction of vibrating H atoms on the surface of platinum particles by isotope dilution neutron spectroscopy J. Chem. Phys. 83, 5339–5341 (1985).CrossRefGoogle Scholar
  31. 31.
    J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis, Academic, London (1967).Google Scholar
  32. 32.
    M. A. Vannice, J. E. Benson, and M. Boudart, Determination of surface area by chemisorption: Unsupported platinum, J. Catal. 16, 348–356 (1970).CrossRefGoogle Scholar
  33. 33.
    R. D. Kelley, R. R. Cavanagh, J. J. Rush, and T. E. Madey, Neutron spectroscopic studies of the adsorption and decomposition of C2H2 and C2H4 on Raney nickel, Surf. Sci., 155,480–498 (1985).CrossRefGoogle Scholar
  34. 34.
    E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations, McGraw-Hill, New York (1965).Google Scholar
  35. 35.
    R. G. Snyder and J. H. Schnachtschneider, A valance force field for saturated hydrocarbons, Spectrochim. Acta 21, 169–195 (1965).CrossRefGoogle Scholar
  36. 36.
    A. Warshel and S. Lifson, Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations and enthalpies of alkanes, J. Chem. Phys. 53, 582–594 (1970).CrossRefGoogle Scholar
  37. 37.
    O. Ermer and S. Lifson, Consistent force field calculations, III. Vibrations conformations, and heats of hydrogenation of nonconjugated olefins, J. Am. Chem. Soc. 95, 4121–4132 (1973).CrossRefGoogle Scholar
  38. 38.
    H. Jobic, J. Tomkinson, and A. Renouprez, Neutron inelastic scattering spectrum and valence force field for benzenetricarbonylchromium, Mol. Phys. 39, 989–999 (1980).CrossRefGoogle Scholar
  39. 39.
    J. Hiraishi, The vibrational spectra of several platinum-ethylene complexes: K[PtCl3(C2H4)]H2O (Zeise’s salt), K[PtCl3(C2D4)]H2O and [PtCl2(C2H4)]2, Spectrochim. Acta 25A, 749–760 (1969).Google Scholar
  40. 40.
    Y. Iwashita, Force constants in the acetylene molecule in a cobalt-carbonyl complex and in an excited electronic state., Inorg. Chem. 9, 1178–1182 (1970).CrossRefGoogle Scholar
  41. 41.
    M. W. Howard, S. F. Kettle, I. A. Oxton, D. B. Powell, N. Sheppard, and P. Skinner, Vibrational spectra and the force field of the HCCo3 group in HCCo3(CO)9, J. Chem. Soc., Faraday Trans.2 77, 397–404 (1981).CrossRefGoogle Scholar
  42. 42.
    P. Skinner, M. W. Howard, I. A. Oxton, S. F. A. Kettle, D. B. Powell, and N. Sheppard, Vibrational spectra and the force field of ethylidyne tricobalt nonacarbonyl: Analogies with spectra from the chemisorption of ethylene upon the Pt(111) crystal face, J. Chem. Soc. Faraday Trans.2 77, 1203–1215 (1981).CrossRefGoogle Scholar
  43. 43.
    I. A. Oxton, D. B. Powell, N. Sheppard, K. Burgess, B. F. G. Johnson, and J. Lewis, The infrared vibrational assignment for the μ2-bridging methylene ligand in metal cluster complexes and its comparison with frequencies assigned to CH2 species chemisorbed on metal surfaces, J. Chem. Soc. Chem. Commun. 719–721 (1982).Google Scholar
  44. 44.
    C. T. Chudley and R. J. Elliot, Neutron scattering from a liquid in a jump diffusion model, Proc. Phys. Soc. (London) 77, 353–361 (1961).CrossRefGoogle Scholar
  45. 45.
    K. Sköld, in Hydrogen in Metals I (G. Alefeld and J. Volkl, eds.), Topics in Applied Physics Vol. 28, pp. 267–287, Springer-Verlag, New York (1978).CrossRefGoogle Scholar
  46. 46.
    R. D. Kelley, J. J. Rush, and T. E. Madey, Vibrational spectroscopy of adsorbed species on nickel by neutron inelastic scattering, Chem. Phys. Lett. 66, 159–164 (1979).CrossRefGoogle Scholar
  47. 47.
    A. J. Renouprez, P. Fouilloux, J. P. Candy, and J. Tomkinson, Chemisorption of water on nickel surfaces, Surf. Sci. 83, 285–295 (1979).CrossRefGoogle Scholar
  48. 48.
    C. J. Wright, Alternative explanation of the inelastic neutron scattering from hydrogen adsorbed by Raney nickel, J. Chem. Soc. Faraday Trans.2 73, 1497–1500 (1977).CrossRefGoogle Scholar
  49. 49.
    A. J. Renouprez, P. Fouilloux, G. Coudurier, D. Tocchetti, and R. Stockmeyer, Different species of hydrogen chemisorbed on Raney nickel studied by neutron inelastic spectroscopy, J. Chem. Soc. Faraday Trans. 1 73, 1–10 (1977).CrossRefGoogle Scholar
  50. 50.
    I. J., Braid, J. Howard, and J. Tomkinson, Inelastic neutron scattering study of hydrogen adsorbed on impure palladium black, J. Chem. Soc. Faraday Trans. 2 79, 253–262 (1983).CrossRefGoogle Scholar
  51. 51.
    J. Howard, T. C. Waddington, and C. J. Wright, Neutron Inelastic Scattering, 1977, II, pp. 499–510, I.A.E.A., Vienna (1978).Google Scholar
  52. 52.
    J.J. Rush, R. R. Cavanagh, and R. D. Kelley, Neutron scattering from adsorbates on platinum black. J. Vac. Sci. Technol. A 1, 1245–1246 (1983).CrossRefGoogle Scholar
  53. 53.
    W. A. Pliskin and R. P. Eischens, Infrared spectra of hydrogen and deuterium chemisorbed on platinum, Z. Phys. Chem. 24, 11–23 (1960).CrossRefGoogle Scholar
  54. 54.
    S. Andersson, Vibrational excitations and structure of H2, D2 and HD adsorbed on Ni(100), Chem. Phys. Lett. 55, 185–188 (1978).CrossRefGoogle Scholar
  55. 55.
    K. Christmann, R. J. Behm, G. Ertl, M. A. Van Hove, and W. H. Weinberg, Chemisorption geometry of hydrogen on Ni(111): Order and disorder, J. Chem. Phys. 70, 4168–4184 (1979).CrossRefGoogle Scholar
  56. 56.
    T. E. Felter and W. H. Weinberg, A model of ethylene and acetylene adsorption on the (111) surface of platinum and nickel, Surf. Sci. 103, 265–287 (1981).CrossRefGoogle Scholar
  57. 57.
    R. D. Kelley, R. R. Cavanagh, J. J. Rush, and T. E. Madey, Neutron inelastic scattering study of C2H4 adsorbed on Raney nickel, Surf Sci. 97, L335–L338 (1980).CrossRefGoogle Scholar
  58. 58.
    H. Jobic and A. Renouprez, Inelastic neutron spectrum of acetylene and ethylene chemisorbed on Raney nickel, Proceedings of the Fourth International Conf. on Solid Surfaces, Cannes, pp. 746–749 (1980).Google Scholar
  59. 59.
    J. Howard, T. C. Waddington, and C. J. Wright, Inelastic neutron scattering study of C2H4 adsorbed on type X zeolites, J. Chem. Soc., Faraday Trans. 2 73, 1768–1787 (1977).CrossRefGoogle Scholar
  60. 60.
    J. Howard and T. C. Waddington, An inelastic neutron scattering study of C2H2 adsorbed on type 13X zeolites, Surf. Sci. 68, 86–95 (1977).CrossRefGoogle Scholar
  61. 61.
    C. J. Wright and C. Reikel, The uniaxial rotation of ethylene adsorbed by sodium 13X zeolite, Mol. Phys. 36, 695–704 (1978).CrossRefGoogle Scholar
  62. 62.
    A. J. Renouprez, R. Stockmeyer, and C. J. Wright, Diffusion of chemisorbed hydrogen in a platinum zeolite, Trans. Faraday Soc. I, 75, 2473–2480 (1979).CrossRefGoogle Scholar
  63. 63.
    E. Cohen de Lara and R. Kahn, Neutron and infrared study of the dynamical behaviour of methane in NaA zeolite, J. Phys. (Paris) 42, 1029–1038 (1981).CrossRefGoogle Scholar
  64. 64.
    H. Jobic, M. Bee, and A. Renouprez, Quasi-elastic neutron scattering of benzene in Na-mordenite, Surf. Sci. 140, 307–320 (1984).CrossRefGoogle Scholar
  65. 65.
    J. J. Tuck, P. L. Hall, M. H. B. Hayes, D. K. Ross, and C. Poinsignon, Quasi-elastic neutron-scattering studies of the dynamics of intercalated molecules in charge-deficient layer silicates, J. Chem. Soc., Faraday Trans. 1 80, 309–324 (1984).CrossRefGoogle Scholar
  66. 66.
    S. F. Trevino and W. H. Rymes, A study of methyl reorientation in solid nitromethane by neutron scattering, J. Chem. Phys. 73, 3001–3006 (1980).CrossRefGoogle Scholar
  67. 67.
    D. Cavagnat, A. Magerl, C. Vettier, I. S. Anderson, and S. F. Trevino, Anomalous pressure dependence of the torsional levels in solid nitromethane., Phys. Rev. Lett. 54, 193–196 (1985).CrossRefGoogle Scholar
  68. 68.
    B. Alefeld, I. S. Anderson, A. Heidemann, A. Mageral, and S. F. Trevino, The measurement of tunnel states in solid CH3NO2 and CD3NO2, J. Chem. Phys. 76, 2758–2759 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • R. R. Cavanagh
    • 1
  • J. J. Rush
    • 1
  • R. D. Kelley
    • 1
  1. 1.National Bureau of StandardsGaithersburgUSA

Personalised recommendations