Advertisement

Inelastic Electron Tunneling Spectroscopy

  • Paul K. Hansma
Part of the Methods of Surface Characterization book series (MOSC, volume 1)

Abstract

Inelastic electron tunneling spectroscopy,(1,2) also known as IETS or tunneling spectroscopy, is a sensitive technique for measuring the vibrational spectra of molecules. At present, it is particularly well suited to measuring the vibrational spectra of a monolayer or submonolayer of molecules adsorbed on aluminum or magnesium oxide or on metal particles or metal complexes that are themselves supported on aluminum or magnesium oxide. In the future, it may be possible to extend it to a much wider range of systems with the use of mechanically adjusted tunnel junctions.

Keywords

Tunnel Junction Electron Tunneling Modulation Voltage Tunneling Spectroscopy Inelastic Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Jaklevic and J. Lambe, Molecular vibration spectra by electron tunneling, Phys. Rev. Lett. 17, 1139–1140 (1966).Google Scholar
  2. 2.
    J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic electron tunneling, Phys. Rev. 165, 821–832 (1968).Google Scholar
  3. 3.
    The water analogy was developed by Atiye Bayman.Google Scholar
  4. 4.
    D. G. Walmsley and W. J. Nelson, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 311–357, Plenum Press, New York (1982).Google Scholar
  5. 5.
    J. D. Langan and P. K. Hansma, Can the concentration of surface species be measured with inelastic electron tunneling?, Surf. Sci. 52, 211–216 (1975).Google Scholar
  6. 6.
    A. A. Cederberg, Inelastic electron tunneling spectroscopy intensity as a function of surface coverage, Surf. Sci. 103, 148–176 (1981).Google Scholar
  7. 7.
    R. M. Kroeker and P. K. Hansma, A measurement of the sensitivity of inelastic electron tunneling spectroscopy, Surf. Sci. 67, 362–366 (1977).Google Scholar
  8. 8.
    D. G. Walmsley, R. B. Floyd, and S. F. J. Read, Inelastic electron tunneling spectra lineshapes below 100 mK, J. Phys. C 11, L107-L110 (1978).Google Scholar
  9. 9.
    K. W. Hipps and Ursula Mazur, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 229–269, Plenum Press, New York (1982).Google Scholar
  10. 10.
    N. I. Bogatina, Selection rules in tunnel spectroscopy for highly symmetrical molecules, Opt. Spectrosc. 38, 43–44 (1975).Google Scholar
  11. 11.
    N. B. Bogatina, I. K. Yanson, B. I. Verkin, and A. G. Batrak, Tunnel spectra of organic solvents, Sov. Phys.-JETP 38, 1162–1165 (1974).Google Scholar
  12. 12.
    J. Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14, 3177–3184 (1976).Google Scholar
  13. 13.
    J. Kirtley and J. T. Hall, Theory of intensities in inelastic-electron tunneling spectroscopy orientation of adsorbed molecules, Phys. Rev. B 21, 848–856 (1980).Google Scholar
  14. 14.
    Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) Plenum Press, New York (1982).Google Scholar
  15. 15.
    Inelastic Electron Tunneling Spectroscopy (T. Wolfram, ed.) Springer, Berlin (1978).Google Scholar
  16. 16.
    S. K. Khanna and J. Lambe, Inelastic electron tunneling spectroscopy, Science 220, 1345–1351 (1983).Google Scholar
  17. 17.
    P. K. Hansma, Inelastic electron tunneling, Phys. Rep. 30C, 147–206 (1977).Google Scholar
  18. 18.
    W. H. Weinberg, Inelastic electron tunneling spectroscopy: A probe of the vibrational structure of surface species, Ann. Rev. Phys. Chem. 29, 115–139 (1978).Google Scholar
  19. 19.
    P. K. Hansma and J. Kirtley, Recent advances in inelastic electron tunneling spectroscopy, Accts. Chem. Res. 11, 440–445 (1978).Google Scholar
  20. 20.
    R. G. Keil, T. P. Graham, and K. P. Roenker, Inelastic electron tunneling spectroscopy: A review of an emerging analytical technique, Appl. Spectrosc. 30, 1–18 (1976).Google Scholar
  21. 21.
    N. M. Brown and D. G. Walmsley, IETS—A new tool, Chem. Br. 12, 92–94 (1976).Google Scholar
  22. 22.
    J. Giaever, Electron tunneling and superconductivity, Rev. Mod. Phys. 46, 245–250 (1974) (his Nobel Prize acceptance speech).Google Scholar
  23. 23.
    W. L. McMilland J. Rowell, in: Superconductivity (R. D. Parks, ed.), p. 561, Marcel Dekker, New York (1969).Google Scholar
  24. 24.
    R. V. Coleman, R. C. Morris, and J. E. Christopher, Methods of Experimental Physics VII. Solid State Physics (R. V. Coleman, ed.), Academic, New York (1974).Google Scholar
  25. 25.
    J. L. Miles and P. H. Smith, The formation of metal oxide films using gaseous and solid electrolytes, J. Electrochem. Soc. 110, 1240–1245 (1963).Google Scholar
  26. 26.
    R. Magno and J. G. Adler, Inelastic electron-tunneling study of barriers grown on aluminum, Phys. Rev. B 13, 2262–2269 (1976).Google Scholar
  27. 27.
    M. G. Simonsen and R. V. Coleman, Inelastic-tunneling spectra of organic compounds, Phys. Rev. B 8, 5875–5887 (1973).Google Scholar
  28. 28.
    P. K. Hansma and R. V. Coleman, Spectroscopy of biological compounds with inelastic electron tunneling, Science 184, 1369–1371 (1974).Google Scholar
  29. 29.
    M. G. Simonsen, R. V. Coleman, and P. K. Hansma, High-resolution inelastic tunneling spectroscopy of macromolecules and adsorbed species with liquid-phase doping, J. Chem. Phys. 61, 3789–3799 (1974).Google Scholar
  30. 30.
    Y. Skarlatos, R. C. Barker, G. L. Haller, and A. Yelon, Detection of dilute organic acids in water by inelastic tunneling spectroscopy, Surf. Sci. 43, 353–368 (1974).Google Scholar
  31. 31.
    A. Bayman and P. K. Hansma, Inelastic electron tunneling spectroscopic study of lubrication, Nature 285, 97–99 (1980).Google Scholar
  32. 32.
    R. C. Jaklevic and M. R. Gaerttner, Electron tunneling spectroscopy—External doping with organic molecules, Appl. Phys. lett. 30, 646–648 (1977).Google Scholar
  33. 33.
    R. C. Jaklevic and M. R. Gaerttner, Inelastic electron tunneling spectroscopy. Experiments on external doping of tunnel junctions by an infusion technique, Appl. Surf. Sci. 1, 479–502 (1978).Google Scholar
  34. 34.
    R. C. Jaklevic, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 451–473, Plenum Press, New York (1982).Google Scholar
  35. 35.
    P. K. Hansma and H. G. Hansma, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 475–481, Plenum Press, New York (1982).Google Scholar
  36. 36.
    D. G. Walmsley, W. J. Nelson, N. M. D. Brown, and R. B. Floyd, Development of inelastic electron tunneling spectroscopy. Comparison of adsorbates on aluminum and magnesium oxides, Appl. Surf. Sci. 5, 107–120 (1980).Google Scholar
  37. 37.
    D. G. Walmsley and W. J. Nelson, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 311–357, Plenum Press, New York (1982).Google Scholar
  38. 38.
    R. J. Jennings and J. R. Merrill, The temperature dependence of impurity-assisted tunneling, J. Phys. Chem. Solids 33, 1261 (1972).Google Scholar
  39. 39.
    D. G. Walmsley, I. W. N. McMorris, W. E. Timms, W. J. Nelson, J. L. Tomlin, and T. J. Griffin, A sensitive robust circuit for inelastic electron tunneling spectroscopy, J. Phys. E: Sci. Instrum. 16, 1052–1057 (1983).Google Scholar
  40. 40.
    D. E. Thomas and J. M. Rowell, Low-level second-harmonic detection system, Rev. Sci. Instrum. 36, 1301–1306 (1965).Google Scholar
  41. 41.
    J. G. Adler and J. E. Jackson, System for observing small nonlinearities in tunnel junctions, Rev. Sci. Instrum. 37, 1049–1054 (1966).Google Scholar
  42. 42.
    A. F. Hebard and P. W. Shumate, A new approach to high resolution measurements of structure in superconducting tunneling currents, Rev. Sci. Instrum. 45, 529–533 (1974).Google Scholar
  43. 43.
    S. Colley and P. K. Hansma, Bridge for differential tunneling spectroscopy, Rev. Sci. Instrum. 48, 1192–1195 (1977).Google Scholar
  44. 44.
    J. G. Adler, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 423–450, Plenum Press, new York (1982).Google Scholar
  45. 45.
    R. Young, J. Ward, and F. Scire, Observation of metal-vacuum-metal tunneling, field emission, and the transition region, Phys. Rev. Lett. 27, 922–924 (1971).Google Scholar
  46. 46.
    R. Young, J. Ward, and F. Scire, The topografiner: An instrument for measuring surface micro topography, Rev. Sci. Instrum. 43, 999–1011 (1972).Google Scholar
  47. 47.
    W. A. Thompson and S. F. Hanrahan, Thermal drive apparatus for direct vacuum tunneling experiments, Rev. Sci. Instrum. 47, 1303–1304 (1976).Google Scholar
  48. 48.
    C. Teague, thesis, available from University Microfilms as dissertation No. 78–24-678, North Texas State University, Denton, Texas 1978.Google Scholar
  49. 49.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Appl. Phys. Lett. 40, 178–180 (1982).Google Scholar
  50. 50.
    G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–60 (1982).Google Scholar
  51. 51.
    J. Moreland, S. Alexander, M. Cox, R. Sonnenfeld, and P. K. Hansma, Squeezable electron tunneling junctions, Appl. Phys. Lett. 43, 387–388 (1983).Google Scholar
  52. 52.
    J. Moreland and P. K. Hansma, An electromagnetic squeezer for compressing squeezable electron tunneling junctions, Rev. Sci. Instrum. 55, 399–403 (1984).Google Scholar
  53. 53.
    J. R. Kirtley and P. K. Hansma, Effect of the second metal electrode on vibrational spectra in inelastic electron tunneling spectroscopy, Phys. Rev. B 12, 531–536 (1975).Google Scholar
  54. 54.
    J. Kirtley and P. K. Hansma, Vibrational mode shifts in inelastic electron tunneling spectroscopy: Effects due to superconductivity and surface interactions, Phys. Rev. B 13, 2910–2916 (1976).Google Scholar
  55. 55.
    A. Bayman, P. K. Hansma, and W. C. Kaska, Shifts and dips in inelastic electron tunneling spectra due to the tunnel junctions environment, Phys. Rev. B 25, 2449–2455 (1981).Google Scholar
  56. 56.
    A. Bayman, P. K. Hansma, and W. C. Kaska, The effect of the top metal electrode on tunneling spectra, Physica 108B, 1171–1172 (1981).Google Scholar
  57. 57.
    R. Magno, M. K. Konkin, and J. G. Adler, Effect of cover electrode metal on inelastic electron tunneling structure, Surf. Sci. 69, 437–443 (1977).Google Scholar
  58. 58.
    P. K. Hansma, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 1–41, Plenum Press, New York (1982).Google Scholar
  59. 59.
    D. J. Scalapino and S. M. Marcus, Theory of inelastic electron-molecule interactions in tunnel junctions, Phys. Rev. Lett. 18, 459–461 (1967).Google Scholar
  60. 60.
    J. Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14, 3177–3184 (1976).Google Scholar
  61. 61.
    J. Bardeen, Tunnelling from a many-particle point of view, Phys. Rev. Lett. 6, 57–59 (1961).Google Scholar
  62. 62.
    M. H. Cohen, L. M. Falicov, and J. C. Phillips, Superconductive tunneling, Phys. Rev. Lett. 8, 316–318 (1962).Google Scholar
  63. 63.
    K. V. Hipps and R. Knochenmuss, Some proposed modifications in the theory of inelastic electron tunneling spectroscopy and the source of parameters utilized, J. Phys. Chem. 86, 4477–4480 (1982).Google Scholar
  64. 64.
    J. D. Langan and P. K. Hansma, Can the concentration of surface species be measured with inelastic electron tunneling? Surf. Sci. 52, 211–216 (1975).Google Scholar
  65. 65.
    R. V. Coleman, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 201–227, Plenum Press, New York (1982).Google Scholar
  66. 66.
    J. M. Clark and R. V. Coleman, Inelastic electron tunneling study of uv radiation damage in surface adsorbed nucleotides, J. Chem. Phys. 73, 2156–2178 (1980).Google Scholar
  67. 67.
    M. G. Simonsen and R. V. Coleman, Tunneling measurements of vibrational spectra of amino acids and related compounds, Nature 244, 218–220 (1973).Google Scholar
  68. 68.
    J. M. Clark and R. V. Coleman, Inelastic electron tunnelling spectroscopy of nucleic acid derivatives, Proc. Natl. Acad. Sci. USA 73, 1598–1602 (1976).Google Scholar
  69. 69.
    K. W. Hipps and U. Mazur, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 229–269, Plenum Press, New York (1982).Google Scholar
  70. 70.
    K. W. Hipps and U. Mazur, An IETS study of some iron cyanide complexes, J. Phys. Chem. 84, 3162–3172 (1980).Google Scholar
  71. 71.
    M. Parikh, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 271–285, Plenum Press, New York (1982).Google Scholar
  72. 72.
    P. K. Hansma and M. Parikh, A tunneling spectroscopy study of molecular degradation due to electron irradiation, Science 188, 1304–1305 (1975).Google Scholar
  73. 73.
    M. Parikh, P. K. Hansma, and J. Hall, Quantitative tunneling spectroscopy study of molecular structural changes due to electron irradiation, Phys. Rev. A 14, 1437–1446 (1976).Google Scholar
  74. 74.
    R. Behrle, W. Rösner, H. Adrian, G. Saemann-Ischenko, F. Bömmel, and I. Söldner, Inelastic electron tunneling as vibrational spectroscopy of adsorbed organic molecules after 3MeV proton irradiation at 4.2 and 293 K, Proceedings of 10th International Conference on Atomic Collisions in Solids (Bad Iburg, Germany, 1983).Google Scholar
  75. 75.
    K. W. Hipps, A tabular review of tunneling spectroscopy, J. Electron Spectrosc. Relat. Phenom. 30, 275–285 (1983).Google Scholar
  76. 76.
    D. G. Walmsley and W. J. Nelson, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 311–357, Plenum Press, New York (1982).Google Scholar
  77. 77.
    N. M. D. Brown, R. B. Floyd, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide. Part 1. Formic acid (HCOOH and DCOOD), acetic acid (CH3COOH, CH3COOD and CD3COOD), trifluoroacetic acid, acetic anhydride, acetaldehyde and acetylchloride, J. Chem. Soc. Faraday Trans. 2 75, 17–31 (1979).Google Scholar
  78. 78.
    D. G. Walmsley, W. J. Nelson, N. M. D. Brown, S. de Cheveigne, S. Gauthier, J. Klein, and A. Leger. Evidence from inelastic electron tunneling spectroscopy for vibrational mode reassignments in simple aliphatic carboxylate ions, Spectrochim Acta 37A, 1015–1019 (1981).Google Scholar
  79. 79.
    N. M. D. Brown, W. J. Nelson, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide. Part 2. Propynoic acid, propenoic acid and 3-methyl-but-2-enoic acid, J. Chem. Soc. Faraday Trans 2 75, 32–37 (1979).Google Scholar
  80. 80.
    N. M. D. Brown, R. B. Floyd, W. J. Nelson, and D. G. Walmsley, Inelastic electron tunneling spectroscopy of selected alcohols and amines on plasma-grown aluminum oxide, J. Chem. Soc. Faraday Trans. 1 76, 2335–2346 (1980).Google Scholar
  81. 81.
    N. M. D. Brown, W. E. Timms, R. J. Turner, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of simple unsaturated hydrocarbons adsorbed on plasma-grown aluminum oxide, J. Catal. 64, 101–109 (1980).Google Scholar
  82. 82.
    The book is being compiled by D. G. Walmsley and J. F. Tomlin.Google Scholar
  83. 83.
    W. H. Weinberg, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 359–391, Plenum Press, New York (1982).Google Scholar
  84. 84.
    H. E. Evans and W. H. Weinberg, Inelastic electron tunneling spectroscopy of zirconium tetraborohydride supported on aluminum oxide, J. Am. Chem. Soc. 102, 872–873 (1980).Google Scholar
  85. 85.
    W. H. Weinberg, W. M. Bowser, and H. E. Evans, Reduced metallic clusters and homogeneous cluster compounds “supported” on aluminum oxide as studied by inelastic electron tunneling spectroscopy, Surf. Sci. 106, 4720–4724 (1980).Google Scholar
  86. 86.
    H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 1. Interactions with deuterium, deuterium oxide and water vapor, J. Am. Chem. Soc. 102, 2548–2553 (1980).Google Scholar
  87. 87.
    H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 2. interactions with ethylene, propylene and acetylene, J. Am. Chem. Soc. 102, 2554–2558 (1980).Google Scholar
  88. 88.
    L. Forester and W. H. Weinberg, A vibrational study of Zr(BH4)4 supported on alumina: Interactions with cyclohexene, 1,3-cyclohexadiene and benzene, J. Vac. Sci. Technol. 18, 600–601 (1981).Google Scholar
  89. 89.
    W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of the interaction of [RhCl(CO)2]2 with an aluminum oxide surface, J. Am. Chem. Soc. 103, 1453–1458 (1981).Google Scholar
  90. 90.
    W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of Ru3(CO)12 adsorbed on an aluminium oxide surface, J. Am. Chem. Soc. 102, 4720–4724 (1980).Google Scholar
  91. 91.
    K. Hipps and U. Mazur, Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy, Rev. Sci. Instrum. 55, 1120 (1984).Google Scholar
  92. 92.
    R. M. Kroeker, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed). pp. 393–421, Plenum Press, New York (1982).Google Scholar
  93. 93.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles, J. Catal. 57, 72–79 (1979).Google Scholar
  94. 94.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Vibrational spectra of carbon monoxide chemisorbed on alumina-supported nickel partices: A tunneling spectroscopy study, J. Chem. Phys. 74, 732–736 (1981).Google Scholar
  95. 95.
    R. M. Kroeker, W. C. Kaska, and F. K. Hansma, Low-energy vibrational modes of carbon monoxide on iron, J. Chem. Phys. 72, 4845–4852 (1980).Google Scholar
  96. 96.
    A. Bayman, P. K. Hansma, W. C. Kaska, and L. H. Dubois, Inelastic electron tunneling spectroscopic study of acetylene chemisorbed on alumina supported palladium particles, Appl. Surf. Sci. 14, 194–208 (1982).Google Scholar
  97. 97.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Formation of hydrocarbons from carbon monoxide on rhodium/alumina model catalysts, J. Catal. 61, 87–95 (1980).Google Scholar
  98. 98.
    R. M. Kroeker and P. K. Hansma, Tunneling spectroscopy for the study of adsorption and reactions on model catalysts, Catal. Rev. Sci. Eng. 23, 553–603 (1981).Google Scholar
  99. 99.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Sulfur modifies the chemisorption of carbon monoxide on rhodium/alumina modei catalysts, J. Catal, 63, 487–490 (1980).Google Scholar
  100. 100.
    H. W. White, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 287–309, Plenum Press, New York (1982).Google Scholar
  101. 101.
    R. M. Ellialtioglu, H. W. White, L. M. Godwin, and T. Wolfram, Study of the corrosion inhibitor formamide in the aluminum-carbon tetrachloride system using IETS, J. Chem. Phys. 75, 2432 (1981).Google Scholar
  102. 102.
    Q. Q. Shu, P. J. Love, A. Bayman, and P. K. Hansma, Aluminum corrosion: Correlations of corrosion rate with surface coverage and tunneling spectra of organic inhibitors, Appl. Surf. Sci. 13, 374–388 (1982).Google Scholar
  103. 103.
    L. H. Dubois, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 153–199, Plenum Press, New York (1982).Google Scholar
  104. 104.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles: Tunneling spectroscopy measurements with isotopes, J. Catal. 57, 72–79 (1979).Google Scholar
  105. 105.
    J. T. Yates, Jr., T. M. Duncan, S. D. Worley, and R. W. Vaughn, Infrared spectra of chemisorbed CO on Rh, J. Chem. Phys. 70, 1219–1224 (1979).Google Scholar
  106. 106.
    L. H. Dubois, P. K. Hansma, and G. A. Somorjai, The application of high resolution electron energy loss spectroscopy to the study of model supported metal catalysts, Appl. Surf. Sci. 6, 173–184 (1980).Google Scholar
  107. 58.
    P. K. Hansma, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 1–41, Plenum Press, New York (1982).Google Scholar
  108. 59.
    D. J. Scalapino and S. M. Marcus, Theory of inelastic electron-molecule interactions in tunnel junctions, Phys. Rev. Lett. 18, 459–461 (1967).Google Scholar
  109. 60.
    J. Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14, 3177–3184 (1976).Google Scholar
  110. 61.
    J. Bardeen, Tunnelling from a many-particle point of view, Phys. Rev. Lett. 6, 57–59 (1961).Google Scholar
  111. 62.
    M. H. Cohen, L. M. Falicov, and J. C. Phillips, Superconductive tunneling, Phys. Rev. Lett. 8, 316–318 (1962).Google Scholar
  112. 63.
    K. V. Hipps and R. Knochenmuss, Some proposed modifications in the theory of inelastic electron tunneling spectroscopy and the source of parameters utilized, J. Phys. Chem. 86, 4477–4480 (1982).Google Scholar
  113. 64.
    J. D. Langan and P. K. Hansma, Can the concentration of surface species be measured with inelastic electron tunneling? Surf. Sci. 52, 211–216 (1975).Google Scholar
  114. 65.
    R. V. Coleman, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 201–227, Plenum Press, New York (1982).Google Scholar
  115. 66.
    J. M. Clark and R. V. Coleman, Inelastic electron tunneling study of uv radiation damage in surface adsorbed nucleotides, J. Chem. Phys. 73, 2156–2178 (1980).Google Scholar
  116. 67.
    M. G. Simonsen and R. V. Coleman, Tunneling measurements of vibrational spectra of amino acids and related compounds, Nature 244, 218–220 (1973).Google Scholar
  117. 68.
    J. M. Clark and R. V. Coleman, Inelastic electron tunnelling spectroscopy of nucleic acid derivatives, Proc. Natl. Acad. Sci. USA 73, 1598–1602 (1976).Google Scholar
  118. 69.
    K. W. Hipps and U. Mazur, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 229–269, Plenum Press, New York (1982).Google Scholar
  119. 70.
    K. W. Hipps and U. Mazur, An IETS study of some iron cyanide complexes, J. Phys. Chem. 84, 3162–3172 (1980).Google Scholar
  120. 71.
    M. Parikh, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 271–285, Plenum Press, New York (1982).Google Scholar
  121. 72.
    P. K. Hansma and M. Parikh, A tunneling spectroscopy study of molecular degradation due to electron irradiation, Science 188, 1304–1305 (1975).Google Scholar
  122. 73.
    M. Parikh, P. K. Hansma, and J. Hall, Quantitative tunneling spectroscopy study of molecular structural changes due to electron irradiation, Phys. Rev. A 14, 1437–1446 (1976).Google Scholar
  123. 74.
    R. Behrle, W. Rösner, H. Adrian, G. Saemann-Ischenko, F. Bömmel, and I. Söldner, Inelastic electron tunneling as vibrational spectroscopy of adsorbed organic molecules after 3MeV proton irradiation at 4.2 and 293 K, Proceedings of 10th International Conference on Atomic Collisions in Solids (Bad Iburg, Germany, 1983).Google Scholar
  124. 75.
    K. W. Hipps, A tabular review of tunneling spectroscopy, J. Electron Spectrosc. Relat. Phenom. 30, 275–285 (1983).Google Scholar
  125. 76.
    D. G. Walmsley and W. J. Nelson, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.) pp. 311–357, Plenum Press, New York (1982).Google Scholar
  126. 77.
    N. M. D. Brown, R. B. Floyd, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide. Part 1. Formic acid (HCOOH and DCOOD), acetic acid (CH3COOH, CH3COOD and CD3COOD), trifluoroacetic acid, acetic anhydride, acetaldehyde and acetylchloride, J. Chem. Soc. Faraday Trans. 2 75, 17–31 (1979).Google Scholar
  127. 78.
    D. G. Walmsley, W. J. Nelson, N. M. D. Brown, S. de Cheveigne, S. Gauthier, J. Klein, and A. Leger. Evidence from inelastic electron tunneling spectroscopy for vibrational mode reassignments in simple aliphatic carboxylate ions, Spectrochim Acta 37A, 1015–1019 (1981).Google Scholar
  128. 79.
    N. M. D. Brown, W. J. Nelson, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of carboxylic acids and related systems chemisorbed on plasma-grown aluminum oxide. Part 2. Propynoic acid, propenoic acid and 3-methyl-but-2-enoic acid, J. Chem. Soc. Faraday Trans 2 75, 32–37 (1979).Google Scholar
  129. 80.
    N. M. D. Brown, R. B. Floyd, W. J. Nelson, and D. G. Walmsley, Inelastic electron tunneling spectroscopy of selected alcohols and amines on plasma-grown aluminum oxide, J. Chem. Soc. Faraday Trans. 1 76, 2335–2346 (1980).Google Scholar
  130. 81.
    N. M. D. Brown, W. E. Timms, R. J. Turner, and D. G. Walmsley, Inelastic electron tunneling spectroscopy (IETS) of simple unsaturated hydrocarbons adsorbed on plasma-grown aluminum oxide, J. Catal. 64, 101–109 (1980).Google Scholar
  131. 82.
    The book is being compiled by D. G. Walmsley and J. F. Tomlin.Google Scholar
  132. 83.
    W. H. Weinberg, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 359–391, Plenum Press, New York (1982).Google Scholar
  133. 84.
    H. E. Evans and W. H. Weinberg, Inelastic electron tunneling spectroscopy of zirconium tetraborohydride supported on aluminum oxide, J. Am. Chem. Soc. 102, 872–873 (1980).Google Scholar
  134. 85.
    W. H. Weinberg, W. M. Bowser, and H. E. Evans, Reduced metallic clusters and homogeneous cluster compounds “supported” on aluminum oxide as studied by inelastic electron tunneling spectroscopy, Surf. Sci. 106, 4720–4724 (1980).Google Scholar
  135. 86.
    H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 1. Interactions with deuterium, deuterium oxide and water vapor, J. Am. Chem. Soc. 102, 2548–2553 (1980).Google Scholar
  136. 87.
    H. E. Evans and W. H. Weinberg, A vibrational study of zirconium tetraborohydride supported on aluminum oxide. 2. interactions with ethylene, propylene and acetylene, J. Am. Chem. Soc. 102, 2554–2558 (1980).Google Scholar
  137. 88.
    L. Forester and W. H. Weinberg, A vibrational study of Zr(BH4)4 supported on alumina: Interactions with cyclohexene, 1,3-cyclohexadiene and benzene, J. Vac. Sci. Technol. 18, 600–601 (1981).Google Scholar
  138. 89.
    W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of the interaction of [RhCl(CO)2]2 with an aluminum oxide surface, J. Am. Chem. Soc. 103, 1453–1458 (1981).Google Scholar
  139. 90.
    W. M. Bowser and W. H. Weinberg, An inelastic electron tunneling spectroscopic study of Ru3(CO)12 adsorbed on an aluminium oxide surface, J. Am. Chem. Soc. 102, 4720–4724 (1980).Google Scholar
  140. 91.
    K. Hipps and U. Mazur, Construction and application of a novel combination glove box deposition system to the study of air-sensitive materials by tunneling spectroscopy, Rev. Sci. Instrum. 55, 1120 (1984).Google Scholar
  141. 92.
    R. M. Kroeker, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed). pp. 393–421, Plenum Press, New York (1982).Google Scholar
  142. 93.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles, J. Catal. 57, 72–79 (1979).Google Scholar
  143. 94.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Vibrational spectra of carbon monoxide chemisorbed on alumina-supported nickel partices: A tunneling spectroscopy study, J. Chem. Phys. 74, 732–736 (1981).Google Scholar
  144. 95.
    R. M. Kroeker, W. C. Kaska, and F. K. Hansma, Low-energy vibrational modes of carbon monoxide on iron, J. Chem. Phys. 72, 4845–4852 (1980).Google Scholar
  145. 96.
    A. Bayman, P. K. Hansma, W. C. Kaska, and L. H. Dubois, Inelastic electron tunneling spectroscopic study of acetylene chemisorbed on alumina supported palladium particles, Appl. Surf. Sci. 14, 194–208 (1982).Google Scholar
  146. 97.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Formation of hydrocarbons from carbon monoxide on rhodium/alumina model catalysts, J. Catal. 61, 87–95 (1980).Google Scholar
  147. 98.
    R. M. Kroeker and P. K. Hansma, Tunneling spectroscopy for the study of adsorption and reactions on model catalysts, Catal. Rev. Sci. Eng. 23, 553–603 (1981).Google Scholar
  148. 99.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, Sulfur modifies the chemisorption of carbon monoxide on rhodium/alumina modei catalysts, J. Catal, 63, 487–490 (1980).Google Scholar
  149. 100.
    H. W. White, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 287–309, Plenum Press, New York (1982).Google Scholar
  150. 101.
    R. M. Ellialtioglu, H. W. White, L. M. Godwin, and T. Wolfram, Study of the corrosion inhibitor formamide in the aluminum-carbon tetrachloride system using IETS, J. Chem. Phys. 75, 2432 (1981).Google Scholar
  151. 102.
    Q. Q. Shu, P. J. Love, A. Bayman, and P. K. Hansma, Aluminum corrosion: Correlations of corrosion rate with surface coverage and tunneling spectra of organic inhibitors, Appl. Surf. Sci. 13, 374–388 (1982).Google Scholar
  152. 103.
    L. H. Dubois, in: Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (P. K. Hansma, ed.), pp. 153–199, Plenum Press, New York (1982).Google Scholar
  153. 104.
    R. M. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina-supported rhodium particles: Tunneling spectroscopy measurements with isotopes, J. Catal. 57, 72–79 (1979).Google Scholar
  154. 105.
    J. T. Yates, Jr., T. M. Duncan, S. D. Worley, and R. W. Vaughn, Infrared spectra of chemisorbed CO on Rh, J. Chem. Phys. 70, 1219–1224 (1979).Google Scholar
  155. 106.
    L. H. Dubois, P. K. Hansma, and G. A. Somorjai, The application of high resolution electron energy loss spectroscopy to the study of model supported metal catalysts, Appl. Surf. Sci. 6, 173–184 (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Paul K. Hansma
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations