Excitation Mechanisms in Vibrational Spectroscopy of Molecules on Surfaces

  • J. W. Gadzuk
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Today it is possible to answer questions concerning the details, on an atomic scale, of the bonding of atoms and molecules to solid surfaces, that were not even realistically being asked 15 years ago. The existence of this four-volume series on “Methods of Surface Characterization” stands as a testament to this incredible progress.


Localize Oscillator Electron Energy Loss Spectroscopy Vibrational Spectroscopy Vibrational Excitation Excitation Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. H. Flygare, Molecular Structure and Dynamics, Prentice-Hall, Englewood Cliffs, New Jersey (1978).Google Scholar
  2. 2.
    D. W. Noid, M. L. Koszykowski, and R. A. Marcus, Quasiperiodic and stochastic behavior in molecules, Ann. Rev. Phys. Chem. 32, 267–309 (1981).Google Scholar
  3. 3.
    D. M. Wardlaw, D. W. Noid, and R. A. Marcus, Semiclassical and quantum vibrational intensities, J. Phys. Chem. 88, 536–547 (1984).Google Scholar
  4. 4.
    E. J. Heller, The semiclassical way to molecular spectroscopy, Acc. Chem. Res. 14, 368–375 (1981).Google Scholar
  5. 5.
    J. M. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1960).Google Scholar
  6. 6.
    J. W. Gadzuk and A. C. Luntz, On vibrational lineshapes of adsorbed molecules, Surf. Sci. 144, 429–450 (1984).Google Scholar
  7. 7.
    S. Andersson, Vibrational excitations and structure of CO adsorbed on Ni(100), Solid State Commun. 21, 75–81 (1977).Google Scholar
  8. 8.
    A. T. Bell and M. L. Hair, ed., Vibrational Spectroscopies for Adsorbed Species, American Chemical Society Symposium Series 137, (1980).Google Scholar
  9. 9.
    R. F. Willis, ed., Vibrational Spectroscopy of Adsorbates, Springer-Verlag, Berlin (1980).Google Scholar
  10. 10.
    H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York (1982).Google Scholar
  11. 11.
    A. M. Bradshaw, Vibrational spectroscopy of adsorbed atoms and molecules, Appl. Surf. Sci. 11/12, 712–729 (1982).Google Scholar
  12. 12.
    R. K. Chang and T. E. Furtak, eds., Surface Enhanced Raman Scattering, Plenum Press, New York (1982).Google Scholar
  13. 13.
    P. K. Hansma, ed., Tunneling Spectroscopy, Plenum Press, New York (1982).Google Scholar
  14. 14.
    F. R. Aussenegg, A. Leitner, and M. E. Lippitsch, eds., Surface Studies with Lasers, Springer-Verlag, Berlin (1983).Google Scholar
  15. 15.
    R. F. Willis, A. A. Lucas, and G. D. Mahan, in: The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 2, Adsorption at Solid Surface (D. A. King and D. P. Woodruff, eds.) pp. 59–163, Elsevier, Amsterdam (1983).Google Scholar
  16. 16.
    P. Avouris and J. Demuth, Electron energy loss spectroscopy in the study of surfaces, Ann. Rev. Phys. Chem. 35, 49–73 (1984).Google Scholar
  17. 17.
    H. Ibach and S. Lehwald, eds., Vibrations in Adsorbed Layers, Berichte der Kernforschungsanlage Jülich-Jül-Conf-26 (1978).Google Scholar
  18. 18.
    R. Caudano, J. M. Gilles, and A. A. Lucas, eds., Vibrations at Surfaces, Plenum Press, New York (1982).Google Scholar
  19. 19.
    C. R. Brundle and H. Morowitz, eds., Vibrations at Surfaces, Elsevier, Amsterdam (1983).Google Scholar
  20. 20.
    D. A. King, N. V. Richardson, and S. Holloway, eds., Vibrations at Surfaces, Elsevier, Amsterdam (1986).Google Scholar
  21. 21.
    R. F. Willis, in Ref. 9. Vibrational Spectroscopy of Adsorbates, Springer-Verlag, Berlin (1980).Google Scholar
  22. 22.
    P. J. Feibelman, Surface electromagnetic fields, Prog. Surf. Sci. 12, 287–408 (1982).Google Scholar
  23. 23.
    R. Ryberg, Carbon monoxide adsorbed on Cu(100) studied by infrared spectroscopy, Surf. Sci. 114, 627–641 (1982).Google Scholar
  24. 24.
    Y. J. Chabal and A. J. Sievers, Infrared study of hydrogen chemisorbed on W(100) by surface-electromagnetic-wave spectroscopy, Phys. Rev. B 24, 2921–2934 (1981).Google Scholar
  25. 25.
    E. J. Heilweil, M. P. Casassa, R. R. Cavanagh, and J. C. Stephenson, Picosecond vibrational energy relaxation of surface hydroxyl groups on colloidal silica, J. Chem. Phys. 81, 2856–2858 (1984).Google Scholar
  26. 26.
    N. Bloembergen and A. H. Zewail, Energy redistribution in isolated molecules and the question of mode-selective laser chemistry revisited, J. Phys. Chem. 88, 5459–5465 (1984).Google Scholar
  27. 27.
    J. W. Gadzuk and H. Metiu, in Ref. 18. Vibrations at Surfaces, Plenum Press, New York (1982).Google Scholar
  28. 28.
    K. Schönhammer and O. Gunnarsson, in Ref. 19. Vibrations at Surfaces, Elsevier, Amsterdam (1983).Google Scholar
  29. 29.
    D. Langreth and H. Suhl, eds., Many-Body Phenomena at Surfaces, Academic, Orlando (1984).Google Scholar
  30. 30.
    V. I. Goldanskii, V. A. Namiot, and R. V. Khokhlov, On the possibility of controlling surface phenomena by means of laser radiation, Zh. Eksp. Teor Fiz. 70, 2349–2359 (1976)Google Scholar
  31. 30a.
    V. I. Goldanskii, V. A. Namiot, and R. V. Khokhlov, On the possibility of controlling surface phenomena by means of laser radiation, Sov. Phys. JETP 43, 1226–1232 (1976)].Google Scholar
  32. 31.
    T. J. Chuang, Laser-induced gas-surface interactions, Surf. Sci. Rep. 3, 1–106 (1983).Google Scholar
  33. 32.
    T. E. Furtak and J. Reyes, A critical analysis of theoretical models for the giant Raman effect from adsorbed molecules, Surf Sci. 93, 351–382 (1980).Google Scholar
  34. 33.
    H. Metiu and P. Das, The electromagnetic theory of surface enhanced spectroscopy, Ann. Rev. Phys. Chem. 35, 507–536 (1984).Google Scholar
  35. 34.
    A. C. Campion, Surface enhanced Raman scattering, Comments Solid State Phys. 3, 107–123 (1984).Google Scholar
  36. 35.
    I. Pockrand, Surface Enhanced Raman Vibrational Studies at Solid/Gas Interfaces, Springer-Verlag, Berlin (1984).Google Scholar
  37. 36.
    M. Scheffler and A. M. Bradshaw, in Ref. 15. The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol. 2, Adsorption at Solid Surface (D. A. King and D. P. Woodruff, eds.) pp. 59–163, Elsevier, Amsterdam (1983).Google Scholar
  38. 37.
    J. Thietke, J. Billman, and A. Otto, in: Dynamics on Surfaces (B. Pullman, ed.) pp. 345–364, D. Reidel, Dordrecht (1984).Google Scholar
  39. 38.
    J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic electron tunneling, Phys. Rev. 165, 821–832 (1968).Google Scholar
  40. 39.
    U. Landman, G. G. Kleiman, C. L. Cleveland, E. Kuster, R. N. Barnett, and J. W. Gadzuk, Hindered and modulated rotations of adsorbed diatomic molecules: States and spectra, Phys. Rev. B 29, 4313–4326 (1984).Google Scholar
  41. 40.
    G. Benedek and U. Valbusa, eds., Dynamics of Gas-Surface Interaction, Springer-Verlag, Berlin (1982).Google Scholar
  42. 41.
    J. P. Toennies, Phonon inelastic scattering of He atoms from single crystal surfaces, J. Vac. Sci. Technol. A2(2), 1055–1065 (1984).Google Scholar
  43. 42.
    B. F. Mason and B. R. Williams, Inelastic atom scattering from a Cu(001) surface and an ordered adsorbed layer of Xe atoms at 16°K, Phys. Rev. Lett. 46, 1138–1142 (1981).Google Scholar
  44. 43.
    E. H. Kerner, Note on the forced and damped oscillator in quantum mechanics, Can. J. Phys. 36, 371–377 (1958).Google Scholar
  45. 44.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965).Google Scholar
  46. 45.
    P. W. Langhoff, S. T. Epstein, and M. Karplus, Aspects of time-dependent perturbation theory, Rev. Mod. Phys. 44, 602–644 (1972).Google Scholar
  47. 46.
    A. P. Clark and I. C. Percival, Vibrational excitation and the Feynman correspondence identity, J. Phys. B. 8, 1939–1952 (1975).Google Scholar
  48. 47.
    W. R. Gentry, in: Atom-Molecule Collision Theory, A Guide for the Experimentalist (R. B. Bernstein, ed.), pp. 391–425, Plenum Press, New York (1979).Google Scholar
  49. 48.
    V. P. Gutschick and M. M. Nieto, Coherent states for general potentials. V. Time evolution, Phys. Rev. D. 22, 403–418 (1980).Google Scholar
  50. 49.
    H. D. Meyer, On the forced harmonic oscillator with time-dependent frequency, Chem. Phys. 61, 365–383 (1981).Google Scholar
  51. 50.
    D. J. Tannor and E. J. Heller, Polyatomic Raman scattering for general harmonic potentials, J. Chem. Phys. 77, 202–218 (1982).Google Scholar
  52. 51.
    H. Grabert, U. Weiss, and P. Talkner, Quantum theory of the damped harmonic oscillator, Z. Phys. B 55, 87–94 (1984).Google Scholar
  53. 52.
    J. B. Marion, Classical Dynamics of Particles and Systems, pp. 128–164, Academic, New York (1965).Google Scholar
  54. 53.
    E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases, pp. 52–58, Clarendon Press, Oxford (1974).Google Scholar
  55. 54.
    A. W. Kleyn, J. Los, and E. A. Gislason, Vibronic coupling at intersections of covalent and ionic states, Phys. Kept. 90, 1–71 (1982).Google Scholar
  56. 55.
    A. A. Lucas and M. Sunjic, Fast-electron spectroscopy of collective excitations in solids, Prog. Surf. Sci. 2, Part 2, 75–137 (1972).Google Scholar
  57. 56.
    J. W. Duff and D. G. Truhlar, Tests of semiclassical treatments of vibrational-translation energy transfer in collinear collisions of helium with hydrogen molecules, Chem. Phys. 9, 243–273 (1975).Google Scholar
  58. 57.
    J. W. Gadzuk and S. Holloway, Charge transfer and vibrational excitation in molecule-surface collisions: Trajectorized quantum theory, Physica Scripta 32, 413–422 (1985).Google Scholar
  59. 58.
    N. D. Lang, in: Theory of the Inhomogeneous Electron Gas (S. Lundqvist and N. H. March, eds.) pp. 309–389, Plenum Press, New York (1983).Google Scholar
  60. 59.
    G. Korzeniewski, T. Maniv, and H. Metiu, The interaction between an oscillating dipole and a metal surface described by a jellium model and the random phase approximation, Chem. Phys. Lett. 73, 212–217 (1980).Google Scholar
  61. 60.
    K. L. Sebastion, The selection rule in electron energy loss spectroscopy of adsorbed molecules, J. Phys. C. 13, L115–117 (1980).Google Scholar
  62. 61.
    R. G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection techniques, J. Chem. Phys. 44, 310–315 (1966).Google Scholar
  63. 62.
    J. D. E. Mclntyre and D. E. Aspnes, Differential reflection spectroscopy of very thin surface films, Surf. Sci. 24, 417–434 (1971).Google Scholar
  64. 63.
    J. Anderson, G. W. Rubloff, M. A. Passier, and P. J. Stiles, Surface reflectance spectroscopy studies of chemisorption on W(100), Phys. Rev. B 10, 2410–2415 (1974).Google Scholar
  65. 64.
    J. D. Jackson, Classical Electrodynamics, Wiley, New York (1962).Google Scholar
  66. 65.
    B. N. J. Persson, Absorption of photons by molecules adsorbed on metal surfaces, Solid State Commun. 30, 163–166 (1979).Google Scholar
  67. 66.
    R. G. Greenler, in Ref. 18. Vibrations at Surfaces, Plenum Press, New York (1982).Google Scholar
  68. 67.
    M. Sunjic, in Ref. 40. Dynamics of Gas-Surface Interaction, Springer-Verlag, Berlin (1982).Google Scholar
  69. 68.
    D. L. Mills, The scattering of low energy electrons by electric field fluctuations near crystal surfaces, Surf Sci. 48, 59–79 (1975).Google Scholar
  70. 69.
    B. N. J. Persson, Theory of inelastic scattering of slow electrons by molecules adsorbed on metal surfaces, Solid State Commun. 24, 573–575 (1977).Google Scholar
  71. 70.
    D. M. Newns, in Ref. 9. Vibrational Spectroscopy of Adsorbates, Springer-Verlag, Berlin (1980).Google Scholar
  72. 71.
    D. Sokcevic, Z. Lenac, R. Brako, and M. Sunjic, Excitation of adsorbed molecule vibrations in low energy electron scattering, Z. Phys. B 28, 273–281 (1977).Google Scholar
  73. 72.
    S. Andersson, B. N. J. Persson, T. Gustafsson, and E. W. Plummer, Vibrational excitation cross-section for adsorbed CO, Solid State Commun. 34, 473–476 (1980).Google Scholar
  74. 73.
    J. W. Davenport, W. Ho, and J. R. Schrieffer, Theory of vibrationally inelastic electron scattering from oriented molecules, Phys. Rev. B 17, 3115–3127 (1978).Google Scholar
  75. 74.
    C. H. Li, S. Y. Tong, and D. L. Mills, Large-angle inelastic electron scattering from adsorbate vibrations: Basic theory, Phys. Rev. B 21, 3057–3073 (1980).Google Scholar
  76. 75.
    G. C. Aers, T. B. Grimley, J. B. Pendry, and K. L. Sebastion, Electron energy loss spectroscopy. Calculation of the impact scattering from W(100)p(l × 1)H, J. Phys. C 14, 3995–4007 (1981).Google Scholar
  77. 76.
    R. F. Willis, in Ref. 9. Vibrational Spectroscopy of Adsorbates, Springer-Verlag, Berlin (1980).Google Scholar
  78. 77.
    W. Ho, R. F. Willis, and E. W. Plummer, Observation of nondipole electron impact vibrational excitations: H on W(100), Phys. Rev. Lett 40, 1463–1466 (1978).Google Scholar
  79. 78.
    E. J. Heller, R. L. Sundberg, and D. Tannor, Simple aspects of Raman scattering, J. Phys. Chem. 86, 1822–1833 (1982).Google Scholar
  80. 79.
    R. L. Sundberg and E. J. Heller, Preparation and dynamics of vibrational hot spots in polyatomics via Raman scattering, Chem. Phys. Lett. 93, 586–591 (1982).Google Scholar
  81. 80.
    D. T. Birtwistle and A. Herzenberg, Vibrational excitation of N2 by resonance scattering of electrons, J. Phys. B 4, 53–70 (1971).Google Scholar
  82. 81.
    G. J. Schulz, Resonances in electron impact on diatomic molecules, Rev. Mod. Phys. 45, 423–486 (1973).Google Scholar
  83. 82.
    W. Domcke and L. S. Cederbaum, Theory of the vibrational structure of resonances in electron molecule scattering, Phys. Rev. A 16, 1465–1482 (1977).Google Scholar
  84. 83.
    C. W. McCurdy and J. L. Turner, Wave packet formulation of the boomerang model for resonant electron-molecule scattering, J. Chem. Phys. 78, 6773–6779 (1983).Google Scholar
  85. 84.
    Potential Energy Surfaces and Dynamics Calculations (D. G. Truhlar, ed.), Plenum Press, New York (1981).Google Scholar
  86. 85.
    D. Schmeisser, J. E. Demuth, and Ph. Avouris, Electron-energy-loss studies of physisorbed O2 and N2 on Ag and Cu surfaces, Phys. Rev. B 26, 4857–4863 (1982).Google Scholar
  87. 86.
    J. W. Gadzuk, Shape resonances, overtones, and electron energy loss spectroscopy of gas phase and physisorbed diatomic molecules, J. Chem. Phys. 79, 3982–3987 (1983).Google Scholar
  88. 87.
    C. Manneback, Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules, Physica 17, 1001–1010 (1951).Google Scholar
  89. 88.
    E. J. Heller, Time-dependent approach to semiclassical dynamics, J. Chem. Phys. 62, 1544–1555 (1975).Google Scholar
  90. 89.
    E. B. Stechel and R. N. Schwartz, Spreading and recurrence in anharmonic quantum-mechanical systems, Chem. Phys. Lett. 83, 350–356 (1981).Google Scholar
  91. 90.
    R. T. Pack, Simple theory of diffuse vibrational structure in continuous uv spectrum of polyatomic molecules. I Collinear photodissociation of symmetric triatomics, J. Chem. Phys. 65, 4765–4770 (1976).Google Scholar
  92. 91.
    J. E. Demuth, D. Schmeisser, and Ph. Avouris, Resonance scattering of electrons from N2, CO, O2 and H2 adsorbed on a silver surface, Phys. Rev. Lett. 47, 1166–1169 (1981).Google Scholar
  93. 92.
    M. Krauss and F. H. Mies, Molecular-orbital calculation of the shape resonance in N<Stack><Subscript>2</Subscript><Superscript>-</Superscript></Stack>, Phys. Rev. A 1, 1592–1598 (1970).Google Scholar
  94. 93.
    W. Marshall and S. W. Lovesey, Theory of Thermal Neutron Scattering, Clarendon Press, Oxfrod (1971).Google Scholar
  95. 94.
    J. P. McTague, M. Nielson, and L. Passell, in: Chemistry and Physics of Solid Surfaces, Volume II, (R. Vanselow, ed..) CRC Press, Boca Raton, Florida (1979).Google Scholar
  96. 95.
    R. C. Casella, Generalized theory of neutron scattering from hydrogen in metals, Phys. Rev. B 28, 2927–2936 (1983).Google Scholar
  97. 96.
    M. J. Puska, R. M. Nieminen, M. Manninen, B. Chakraborty, S. Holloway, and J. K. Nørskov, Quantum motion of chemisorbed hydrogen on Ni surfaces, Phys. Rev. Lett. 51, 1081–1084 (1983).Google Scholar
  98. 97.
    R. R. Cavanagh, J. J. Rush, and R. D. Kelley, Comment on “Quantum motion of chemisorbed hydrogen on Ni surfaces”, Phys. Rev. Lett. 52, 2100 (1984).Google Scholar
  99. 98.
    J. W. Gadzuk, Localized vibrational modes in Fermi liquids. General theory, Phys. Rev. B 24, 1651–1663 (1981).Google Scholar
  100. 99.
    V. P., Zhdanov and K. I. Zamaraev, Vibrational relaxation of adsorbed molecules. Mechanisms and manifestations in chemical reactions on solid surfaces, Catal. Rev. Sci. Eng. 24(3), 373–413 (1982).Google Scholar
  101. 100.
    B. Hellsing and M. Persson, Electronic damping of atomic and molecular vibrations at metal surfaces, Phys. Scr. 29, 360–371 (1984).Google Scholar
  102. 101.
    P. Avouris and B. N. J. Persson, Excited states at metal surfaces and their nonradiative relaxation, J. Phys. Chem. 88, 837–848 (1984).Google Scholar
  103. 102.
    A. Laubereau and W. Kaiser, Vibrational dynamics of liquids and solids investigated by picosecond light pulses, Rev. Mod. Phys. 50, 607–665 (1978).Google Scholar
  104. 103.
    D. A. Wiersma, Coherent optical transient studies of dephasing and relaxation in electronic transitions of large molecules in the condensed phase, Adv. Chem. Phys. 47, 421–485 (1981).Google Scholar
  105. 104.
    D. W. Oxtoby, Vibrational population relaxation in liquids, Adv. Chem. Phys. 47, 487–519 (1981).Google Scholar
  106. 105.
    R. M. Shelby, C. B. Harris, and P. A. Cornelius, The origin of vibrational dephasing of polyatomic molecules in condensed phases, J. Chem. Phys. 70, 34–41 (1979).Google Scholar
  107. 106.
    A. H. Zewail, Optical molecular dephasing: Principles of and probings by coherent laser spectroscopy, Acc. Chem. Res. 13, 360–368 (1980).Google Scholar
  108. 107.
    R. Kubo, A stochastic theory of line shape, Adv. Chem. Phys. 15, 101–127 (1969).Google Scholar
  109. 108.
    P. W. Anderson, A mathematical model for the narrowing of spectral lines by exchange or motion, J. Phys. Soc. Jpn. 9, 316–339 (1954).Google Scholar
  110. 109.
    G. P. Brivio and T. B. Grimley, Lifetimes of electronically adiabatic vibrational states of a chemisorbed atom, J. Phys. C 10, 2351–2363 (1977).Google Scholar
  111. 110.
    T. S. Rahman, D. L. Mills, and J. E. Black, Low frequency surface resonance modes in electron energy loss spectroscopy, J. Electron Spectrosc. Relat. Phenom. 29, 199–212 (1983).Google Scholar
  112. 111.
    J. C. Ariyasu, D. L. Mills, K. G. Lloyd, and J. C. Hemminger, Anharmonic damping of vibrational modes, Phys. Rev. B 28, 6123–6126 (1983).Google Scholar
  113. 112.
    R. R. Chance, A Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces, Adv. Chem. Phys. 37, 1–65 (1978).Google Scholar
  114. 113.
    U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866–1878 (1961).Google Scholar
  115. 114.
    E. Müller-Hartman, T. V. Ramakrishnan, and G. Toulouse, Localized dynamic perturbations in metals, Phys. Rev. B 3, 1102–1119 (1971).Google Scholar
  116. 115.
    M. Trenary, K. J. Uram, F. Bozso, and J. T. Yates, Jr., Temperature dependence of the vibrational lineshape of CO chemisorbed on the Ni(111) surface, Surf. Sci. 146, 269–280 (1984).Google Scholar
  117. 116.
    R. Ryberg, Vibrational line shape of chemisorbed CO, Phys. Rev. B32, 2671–2673 (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • J. W. Gadzuk
    • 1
  1. 1.National Bureau of StandardsGaithersburgUSA

Personalised recommendations