Normal Modes at Surfaces

  • N. V. Richardson
  • N. Sheppard
Part of the Methods of Surface Characterization book series (MOSC, volume 1)


Vibrational spectroscopic techniques have played a major role in extending our understanding of structure, bonding, and reactivity in all phases of matter. Only relatively recently has it become feasible to apply these powerful experimental methods to the study of surfaces and species adsorbed at those surfaces. Vibrational spectroscopy has the great advantage over many other surface-sensitive spectroscopies that one has available a vast body of data, already collected and understood, for gas phase, liquid phase, and solid systems. The concept of group frequency is of great importance. Similarly, our knowledge of spectroscopic activity in the gas phase and in three-dimensional crystalline arrays is well developed and amenable to the powerful methods of group theory in its interpretation.


Point Group Phonon Mode Electron Energy Loss Spectroscopy Mirror Plane Symmetry Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. H. Little, Infrared Spectra of Adsorbed Species, Academic, New York (1966).Google Scholar
  2. 2.
    M. L. Hair, Infrared Spectroscopy in Surface Chemistry, Dekker, New York (1967).Google Scholar
  3. 3.
    A. V. Kiselev and V. I. Lygin, Infrared Spectra of Surface Compounds, Wiley, New York (1975).Google Scholar
  4. 4.
    Chemical Applications of Thermal Neutron Scattering (B. T. M. Willis, ed.), Oxford Univ. Press, Oxford (1973).Google Scholar
  5. 5.
    H. Seki, J. Electron Spectrosc. Relat. Phenom. 30, 287 (1983).CrossRefGoogle Scholar
  6. 6.
    Vibrational Spectroscopy of Adsorbates (R. F. Willis, ed.), Springer-Verlag, Berlin (1980).Google Scholar
  7. 7.
    Vibrational Spectroscopies for Adsorbed Species (A. T. Bell and M. L. Hair, eds.), American Chemical Society, Washington, D.C., (1980).Google Scholar
  8. 8.
    J. Pritchard, in Chemical Physics of Solids and their Surfaces, Vol. 7 (M. W. Roberts and J. M. Thomas, eds.), Specialist Periodical Reports, The Chemical Society, London (1978), p. 157.CrossRefGoogle Scholar
  9. 9.
    H. Ibach and D. L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations, Academic, New York, (1982).Google Scholar
  10. 10.
    F. Hoffman, Surf. Sci Rep. 3(2, 3) 107 (1983).CrossRefGoogle Scholar
  11. 11a.
    Chemical applications of LEED are covered in G. A. Somorjai, Chemistry in Two-Dimensional Surfaces, Cornell Univ. Press, Ithaca and London, (1981);Google Scholar
  12. 11b.
    a more formal account of LEED is given in J. P. Pendry, Low Energy Electron Diffraction, Academic, London (1974).Google Scholar
  13. 12.
    N. Sheppard and J. Erkelens, Appl. Spectros. 38, 471 (1984).CrossRefGoogle Scholar
  14. 13.
    W. H. Smith and H. C. Eckstrom, J. Chem. Phys. 46, 3657 (1967).CrossRefGoogle Scholar
  15. 14.
    H. Nichols and R. M. Hexter, J. Chem. Phys. 75, 3126 (1981).CrossRefGoogle Scholar
  16. 15.
    H. Nichols and R. M. Hexter, Surf. Sci. 118, 597 (1982).CrossRefGoogle Scholar
  17. 16.
    N. V. Richardson and J. K. Sass, Chem. Phys. Lett. 62, 267 (1979).CrossRefGoogle Scholar
  18. 17.
    R. M. Hexter and M. G. Albrecht, Spectrochim. Acta 35A, 233 (1979).Google Scholar
  19. 18.
    H. Nichols and R. M. Hexter, J. Chem. Phys. 73, 965 (1980).CrossRefGoogle Scholar
  20. 19.
    N. V. Richardson and A. M. Bradshaw, In Electron SpectroscopyTheory, Techniques and Applications, Vol. 4 (C. R. Brundle and A. D. Baker, eds.), Academic, New York (1981).Google Scholar
  21. 20.
    G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York (1945).Google Scholar
  22. 21.
    R. G. Greenler, J. Chem. Phys. 44, 310 (1966).CrossRefGoogle Scholar
  23. 22.
    H. A. Pearce and N. Sheppard, Surf Sci. 59, 205 (1976).CrossRefGoogle Scholar
  24. 23.
    H. Ibach, Surf. Sci. 66, 56 (1977).CrossRefGoogle Scholar
  25. 24.
    J. E. Demuth and D. E. Eastman, Phys. Rev. Lett. 32, 1123 (1974).CrossRefGoogle Scholar
  26. 25.
    N. V. Richardson and P. Hofmann, Vacuum 33, 793 (1983).CrossRefGoogle Scholar
  27. 26.
    J. E. Demuth and H. Ibach, Surf Sci. 78, L238 (1978).CrossRefGoogle Scholar
  28. 27.
    N. V. Richardson, Vacuum 33, 787 (1983).CrossRefGoogle Scholar
  29. 28.
    W. Ho, R. F. Willis, and E. W. Plummer, Phys. Rev. Lett. 40, 1463 (1978).CrossRefGoogle Scholar
  30. 29.
    C. H. Li, S. Y. Tong, and D. L. Mills, Phys. Rev. B 21, 3057 (1980).CrossRefGoogle Scholar
  31. 30.
    A. M. Baro, H. Ibach, and H. D. Bruchmann, Surf. Sci. 88, 384 (1979).CrossRefGoogle Scholar
  32. 31.
    G. Aers, T. B. Grimley, J. B. Pendry, and K. L. Sebastian, J. Phys. C 14, 3995 (1981).CrossRefGoogle Scholar
  33. 32.
    Inelastic Electron Tunnelling Spectroscopy (T. Wolfman, ed.), Springer-Verlag, Berlin (1978); see also Chap. 5 of Ref. 6 and Chap. 11 of Ref. 7.Google Scholar
  34. 33.
    G. Brusdeylins, R. B. Doak, and J. P. Toennies, Phys. Rev. B 27, 3662 (1983).CrossRefGoogle Scholar
  35. 34.
    M. Cates and D. R. Miller, Phys. Rev. B 28, 3615 (1983).CrossRefGoogle Scholar
  36. 35.
    R. B. Doak, V. Harten, and J. P. Toennies, Phys. Rev. Lett. 51, 578 (1983).CrossRefGoogle Scholar
  37. 36.
    A. P. Cracknell, Thin Solid Films 21, 107 (1974).CrossRefGoogle Scholar
  38. 37.
    International Tables for X-Ray Crystallography, Vol. 1 (N. F. M. Henry and K. Lonsdale, eds.), Kynoch Press, Birmingham, England (1965), 2nd Ed.Google Scholar
  39. 38.
    M. W. Howard, U. A. Jayasooriya, S. F. A. Kettle, D. B. Powell, and N. Sheppard, J. Chem. Soc. Chem. Commun. 18 (1979).Google Scholar
  40. 39.
    See the discussion of the related case of a hydrogen atom bonded to three metal atoms in J. A. Andrews, U. A. Jayasooriya, I. A. Oxton, D. B. Powell, N. Sheppard, P. F. Jackson, B. F. G. Johnson, and J. Lewis, Inorg. Chem. 19, 3033 (1980).CrossRefGoogle Scholar
  41. 40.
    N. V. Richardson and A. M. Bradshaw, Surf Sci. 88, 255 (1979).CrossRefGoogle Scholar
  42. 41.
    D. C. Harris and M. D. Bertolucci, Symmetry and Spectroscopy, Oxford University Press, New York (1978).Google Scholar
  43. 42.
    W. Erley, A. M. Baro, and H. Ibach, Surf Sci. 120, 273 (1980).CrossRefGoogle Scholar
  44. 43.
    J. P. Mathieu, Spectres de Vibration et Symétrie des Molecules et des Cristaux, Hermann, Paris (1945).Google Scholar
  45. 44.
    P. M. A. Sherwood, Vibrational Spectroscopy of Solids, Cambridge Univ. Press, London (1972).Google Scholar
  46. 45.
    W. G. Fateley, F. R. Dollish, N. T. Devitt, and F. F. Bentley, Infrared and Raman Selection Rules for Molecular and Lattice Vibrations, Wiley, Interscience, New York (1972).Google Scholar
  47. 46.
    J. C. Decius and R. M. Hexter, Molecular Vibrations in Crystals, McGraw-Hill, New York (1977).Google Scholar
  48. 47.
    H. Ibach and D. Bruchmann, Phys. Rev. Lett. 44, 36 (1980).CrossRefGoogle Scholar
  49. 48.
    S. Lehwald, J. M. Szeftel, H. Ibach, T. S. Rahman, and D. L. Mills, Phys. Rev. Lett. 50, 518 (1983).CrossRefGoogle Scholar
  50. 49.
    S. Andersson, in Vibrations at Surfaces (R. Caudano, J. M. Gilles, and A. A. Lucas, eds.), Plenum Press, New York (1982), p. 169.CrossRefGoogle Scholar
  51. 50.
    J. M. Szeftel, Surf. Sci. 152/153, 797 (1983).CrossRefGoogle Scholar
  52. 51.
    S. Andersson, Surf. Sci. 79, 385 (1979).CrossRefGoogle Scholar
  53. 52.
    K. Griffiths, D. A. King, G. C. Aers and J. B. Pendry, J. Phys. C 15, 4921 (1982).CrossRefGoogle Scholar
  54. 53.
    N. V. Richardson and J. K. Sass, Surf Sci. 103, 496 (1981).CrossRefGoogle Scholar
  55. 54.
    J. M. Szeftel, S. Lehwald, H. Ibach, T. S. Rahman, J. E. Black, and D. L. Mills, Phys. Rev. Lett. 51, 268 (1983).CrossRefGoogle Scholar
  56. 55.
    H. Froitzheim, H. Ibach, and S. Lehwald, Phys. Rev. Lett. 36, 1549 (1976).CrossRefGoogle Scholar
  57. 56.
    R. F. Willis, W. Ho, and E. W. Plummer, Surf. Sci. 80, 593 (1979).CrossRefGoogle Scholar
  58. 57.
    H. Froitzheim, H. Hopster, H. Ibach, and S. Lehwald, Appl. Phys. 13, 47 (1977).CrossRefGoogle Scholar
  59. 58.
    H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1983).CrossRefGoogle Scholar
  60. 59.
    W. Erley, H. Wagner, and H. Ibach, Surf Sci. 80, 612 (1979).CrossRefGoogle Scholar
  61. 60.
    R. M. Lambert, Surf Sci. 49, 325 (1975).CrossRefGoogle Scholar
  62. 61.
    B. J. Bandy, M. A. Chesters, P. Hollins, J. Pritchard, and N. Sheppard, J. Mol. Struct. 80, 203 (1982).CrossRefGoogle Scholar
  63. 62.
    J. C. Bertolini and B. Tandy, Surf. Sci. 102, 131 (1981).CrossRefGoogle Scholar
  64. 63.
    M. Nichijuna, S. Masuda, Y. Sakisaka, and M. Onchi, Surf Sci. 107, 31 (1981).CrossRefGoogle Scholar
  65. 64.
    M. A. Chesters, G. S. McDougall, M. Pemble, and N. Sheppard, Surf Sci. 164, 425 (1985).CrossRefGoogle Scholar
  66. 65.
    S. R. Bare, K. Griffiths, P. Hofmann, D. A. King, G. L. Nyberg, and N. V. Richardson, Surf Sci. 120, 367 (1982).CrossRefGoogle Scholar
  67. 66.
    P. Hoffmann, S. R. Bare, N. V. Richardson, and D. A. King, Solid State Commun. 42, 645 (1982).CrossRefGoogle Scholar
  68. 67.
    N. V. Richardson, Surf Sci. 126, 337 (1983).CrossRefGoogle Scholar
  69. 68.
    M. Persson and S. Andersson, Surf Sci. 117, 352 (1982).CrossRefGoogle Scholar
  70. 69.
    S. Andersson and M. Persson, Phys. Rev. B 24, 3659 (1981).CrossRefGoogle Scholar
  71. 70.
    S. Andersson and J. B. Pendry, Phys. Rev. Lett. 43, 363 (1979).CrossRefGoogle Scholar
  72. 71.
    D. G. Fedak and N. A. Gjostein, Surf Sci. 8, 77 (1967).CrossRefGoogle Scholar
  73. 72.
    H. Wolf, H. Jagodzinski, and W. Moritz, Surf Sci. 77, 265 (1978).CrossRefGoogle Scholar
  74. 73.
    A. M. Lahee, W. Allison, R. F. Willis, and K. H. Rieder, Surf Sci. 126, 654 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • N. V. Richardson
    • 1
  • N. Sheppard
    • 2
  1. 1.Donnan LaboratoriesUniversity of LiverpoolLiverpoolUK
  2. 2.School of Chemical SciencesUniversity of East AngliaNorwichUK

Personalised recommendations