Advertisement

Equipment Associated with Low-Temperature Systems

  • Klaus D. Timmerhaus
  • Thomas M. Flynn
Part of the The International Cryogenics Monograph Series book series (ICMS)

Abstract

A critical component in any low-temperature liquefaction and refrigeration system is the heat exchanger. This point is readily demonstrated by considering the influence of heat exchanger effectiveness on the liquid yield for a simple Joule-Thomson liquefaction process. For example, if the working fluid is nitrogen and the lower and upper pressure limits are 0.101 and 20.2 MPa, respectively, the liquid yield under these conditions will be zero for an exchanger with an effectiveness less than 0.85. Heat exchanger effectiveness in this context is defined as the ratio of the actual heat transferred to the maximum heat that theoretically could have been transferred.

Keywords

Heat Exchanger Mass Flow Rate Centrifugal Compressor Shell Side Exit Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. O’Neill, C. F. Gottzmann, and J. W. Terbot, Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York, 1972, p. 420.Google Scholar
  2. 2.
    E. D. Grimison, Trans. ASME 59, 583 (1937);Google Scholar
  3. 2a.
    E. D. Grimison, Trans. ASME 60, 381 (1938).Google Scholar
  4. 3.
    E. J. Gregory, Cryogenic Engineering, B. A. Hands (Ed.), Academic Press, Orlando, FL, 1986, p. 193.Google Scholar
  5. 4.
    E. J. Davis and M. M. David, IEC Fund 3, 111 (1964).CrossRefGoogle Scholar
  6. 5.
    J. G. Collier, P. M. Lacey, and D. J. Pulling, Trans. IChE 42, T127 (1964).Google Scholar
  7. 6.
    J. M. Chenoweth and M. W. Martin, Pet. Refiner 34, 151 (1955).Google Scholar
  8. 7.
    J. E. Diehl, Pet. Refiner 36, 147 (1957).Google Scholar
  9. 8.
    R. F. Weimar and D. G. Hartzog, Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York, 1973, p. 52.CrossRefGoogle Scholar
  10. 9.
    S. G. Sydoriak, Advances in Cryogenic Engineering, Vol. 18, Plenum Press, New York, 1973, p. 73.CrossRefGoogle Scholar
  11. 10.
    R. J. Richards, R. F. Robbins, R. B. Jacobs, and D. C. Holten, Advances in Cryogenic Engineering, Vol. 3, Plenum Press, New York, 1960, p. 375.CrossRefGoogle Scholar
  12. 11.
    C. Johannes and J. Mollard, Advances in Cryogenic Engineering, Vol. 17, Plenum Press, New York, 1972, p. 332.Google Scholar
  13. 12.
    R. W. Lockhart and R. C. Martinelli, Chem. Eng. Progr. 45(1), 39 (1949).Google Scholar
  14. 13.
    K. D. Timmerhaus and R. J. Schoenhals, Advances in Cryogenic Engineering, Vol. 19, Plenum Press, New York, 1974, p. 445.Google Scholar
  15. 14.
    G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, 1969.Google Scholar
  16. 15.
    W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984.Google Scholar
  17. 16.
    A. G. Lenfestey, Advanced Cryogenics, C. A. Bailey (Ed.), Plenum Press, New York, 1971, p. 155.Google Scholar
  18. 17.
    M. Jakob, Heat Transfer, Vol. 1, J. Wiley and Sons, New York, 1949, p. 235.Google Scholar
  19. 18.
    S. Harada, T. Matsuda, S. Saito, and K. Ihara, Proc. Fourth Inter. Cryocooler Conf., David Taylor Naval Ship Research and Development Center Pub., 1986, p. 159.Google Scholar
  20. 19.
    H. Sixsmith, J. Valenzuela, and W. L. Swift, Advances in Cryogenic Engineering, Vol. 33, Plenum Press, New York, 1988, p. 827.Google Scholar
  21. 20.
    H. Bliss and B. F. Dodge, Chem. Eng. Progr. 45, 51 (1949).Google Scholar
  22. 21.
    R. Strobridge, The Thermodynamic Properties of Nitrogen from 63 to 300 K Between 1 and 200 Atmospheres (NBS Tech. Note 129), U.S. Government Printing Office, Washington, D.C., 1963.Google Scholar
  23. 22.
    H. Hausen, Wärmeübertragung in Gegenstrom, Gleichstrom und Kreuzstrom, Springer-Verlag, Berlin, 1976.Google Scholar
  24. 23.
    A. Bretherton, Ph.D. dissertation, Bradford University, Bradford, England, 1970.Google Scholar
  25. 24.
    G. Walker and W. K. Wan, Proc. Fourth International Cryogenic Engineering Conference, IPC Science and Technical Press, Guildford, England, 1972.Google Scholar
  26. 25.
    T. J. Peterson and J. D. Fuerst, Advances in Cryogenic Engineering, Vol. 33, Plenum Press, New York, 1988, p. 655.Google Scholar
  27. 26.
    H. Sixsmith and W. L. Swift, Cryogenic Engineering, B. A. Hands (Ed.), Academic Press, Orlando, FL, 1986, p. 341.Google Scholar
  28. 27.
    J. S. Swearingen, Chem. Eng. Progr. 68(7), 95 (1972).Google Scholar
  29. 28.
    J. A. Valenzuela, H. Sixsmith, and W. L. Swift, Proc. Fourth Inter. Cryocooler Conf., David Taylor Naval Ship Research and Development Center Pub., 1987, p. 135.Google Scholar
  30. 29.
    H. Izumi, S. Harada, K. Matsubara, and S. Saito, Advances in Cryogenic Engineering, Vol. 31, Plenum Press, New York, 1986, p. 811.CrossRefGoogle Scholar
  31. 30.
    W. E. Gifford, Advances in Cryogenic Engineering, Vol. 2, Plenum Press, New York, 1960, p. 276.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Klaus D. Timmerhaus
    • 1
  • Thomas M. Flynn
    • 2
  1. 1.University of ColoradoBoulderUSA
  2. 2.Ball Aerospace Systems GroupBoulderUSA

Personalised recommendations