Advertisement

Past, Present, and Possible Future Clinical Applications of the Lanthanides

  • C. H. Evans
Part of the Biochemistry of the Elements book series (BOTE, volume 8)

Abstract

Many of the properties of the lanthanides appear to lend themselves to clinical application. The lanthanides are antimicrobial and anticoagulant substances which suppress many of the types of Ca2+-dependent cellular activation processes (Section 6.4) that occur in diseases. Lanthanides are of relatively low toxicity (Chapter 8), while their metabolism can be manipulated by the presence of specific chelators, by varying the site of injection, or both (Chapter 7). In addition, lanthanides appear to accumulate in tumors or at sites of inflammation. They provide a range of radioisotopes, with various half-lives, which emit α, β, or γ radiation, while certain members are strongly paramagnetic. In addition, most lanthanides are cheap, readily available, and straightforward to work with. As alluded to in the introductory chapter (Section 1.3), the evidence suggests that lanthanides are worth investigating as agents with which to attack several of the major diseases of the Western world.

Keywords

Nuclear Magnetic Resonance Nuclear Magnetic Resonance Imaging Cerium Nitrate Intraarticular Injection Citrate Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adiseshan, N., Johnson, F. L., and Buttfield, I.H., 1975. Detection of synovial cysts by transmission-emission scintigrams following intraarticular 169Yb-DTPA, Aust. N.Z. J. Med. 5:256–260.PubMedGoogle Scholar
  2. Agha, N.H., Al-Hilli, A.M., Hassan, H.A., Al-Hissoni, M.H., and Miran, K.M., 1982. Ytterbium-169-phytate: a potential new radiopharmaceutical for functional scintigraphy of the liver, Int. J. Appl. Radiat. Isotop. 33:673–677.Google Scholar
  3. Allgower, M., Burn, C., Cueri, L., Engley, M., Gruber, U.F., Harder, F., and Russel, R.G.G., 1968. Study of burn toxins, Ann. N.Y. Acad. Sci. 150:808–815.Google Scholar
  4. Allgower, M., Cueri, L.B., and Stadtler, K., 1973. Burn toxin in mouse skin, J. Trauma 13:95–111.PubMedGoogle Scholar
  5. Ando, A., Doishita, K., Ando, I., Sanada, S., Hiraki, T., Midsukami, M., and Hisada, K., 1977. Study of distribution of l69Yb, 67Ga and 111In in tumor tissue by macroautora-diography: comparison between viable tumor tissue and inflammatory infiltration around tumor, Radioisotopes (Tokyo) 26:421–422.Google Scholar
  6. Ando, A., Ando, I., Takeshita, M., Hiraki, T., and Hisada, K., 1981. Subcellular distribution of 111In and 169Yb in tumor and liver, Eur. J. Nucl. Med. 6:221–226.PubMedGoogle Scholar
  7. Ando, A., Ando, I., Hiraki, T., Takeshita, M., and Hisada, K., 1982. Mechanism of tumor and liver concentration of 111In and 169Yb: 111In and 169Yb binding substances in tumor tissues and liver, Eur. J. Nucl. Med. 7:298–303.PubMedGoogle Scholar
  8. Ando, A., Ando, I., Sakamoto, K., Hiraki, T., Hisada, K., and Takeshita, M., 1983. Affinity of 167Tm-citrate for tumor and liver tissue, Eur. J. Nucl. Med. 8:440–446.PubMedGoogle Scholar
  9. Andrews, R. P., and David E., 1974. Cisternography with chelated ytterbium 169, J. Maine Med. Assoc. 65:313–332.PubMedGoogle Scholar
  10. Anghileri, L. J., 1979. Effects of gallium and lanthanum on experimental tumor growth, Eur. J. Cancer 15:1459–1462.PubMedGoogle Scholar
  11. Anghileri, L., 1988. Potentiation of hyperthermia by lanthanum, Recent Results Cancer Res. 109:126–135.PubMedGoogle Scholar
  12. Anghileri, L.J., Marchai, C., Crone, M.C., and Robert, J., 1983. Enhancement of hyperthermia lethality by lanthanum, Arch. Geschwulstforsch. 53:335–339.PubMedGoogle Scholar
  13. Ansell, B. M., Crook, A., Mallard, J. R., and Bywaters, E. G. L., 1963. Evaluation of intraarticular colloidal gold 198Au in the treatment of knee effusions, Ann. Rheum. Dis. 22: 435–439.PubMedCentralPubMedGoogle Scholar
  14. Arvela, P., 1979. Toxicity of rare-earths, Prog. Pharmacol. 2:71–114.Google Scholar
  15. Baehr, G., and Wessler, H., 1909. The use of cerium oxalate for the relief of vomiting: an experimental study of the effects of some salts of cerium, lanthanum, praseodymium, neodymium and thorium, Arch. Intern. Med. 2:517–531.Google Scholar
  16. Balogh, G., 1974. Phlogosol therapy in inflammations of the oral mucosa, Ther. Hung. 22: 83–89.PubMedGoogle Scholar
  17. Bard, D.R., Knight, C.G., and Page-Thomas, D.P., 1985. Effect of the intra-articular injection of lutetium-177 in chelator liposomes on the progress of an experimental arthritis in rabbits, Clin. Exp. Rheumatol. 3:237–242.PubMedGoogle Scholar
  18. Basile, A.C., and Hanada, S., 1979. Inhibitory effects of praseodymium, gadolinium and ytterbium chlorides on the increase of vascular permeability and on granuloma tissue formation in rats, An. Farm. Quim. São Paulo 19:3–26.Google Scholar
  19. Basile, A.C., Hanada, S., Sertie, J. A. A., and Oga, S., 1984. Anti-inflammatory effects of praseodymium, gadolinium and ytterbium chlorides, J. Pharmacobio-Dyn. 7:94–100.PubMedGoogle Scholar
  20. Beaser, S.B., Segel, A., and Vandam, L., 1942. The anticoagulant effects in rabbits and man of the intravenous injection of salts of the rare earths, J. Clin. Invest. 21:447–453.PubMedCentralPubMedGoogle Scholar
  21. Beazley, V. C., Thrane, P., and Rolla, G., 1980. Effect of mouthrinses with SnF2, LaCl3, NaF and Chlorhexidine on the amount of lipoteichoic acid formed in plaque, Scand. J. Dent. Res. 88:193–200.PubMedGoogle Scholar
  22. Beyer, G. J., Franke, W. G., Hennig, K., Johannsen, B. A., Khalkin, V. A., Kretzschmar, M., Lebedev, N. A., Munze, R., Novgorodov, A. F., and Thieme, K., 1978. Comparative kinetic studies of simultaneously injected 167Tm and 67Ga-citrate in normal and tumour bearing mice, Int. J. Appl. Radiat. Isotop. 29:673–681, 1978.Google Scholar
  23. Bloomer, W.D., McLaughlin, W.H., Lambrecht, R.M., Atcher, R. W., Mirzadeh, S., Madera, J.L., Milius, R.A., Zalutsky, M.R., Adelstein, S. J., and Wolf, A. P., 1984. 211At radiocolloid therapy: further observations and comparisons with radiocolloids of 32P, 165Dy and 90Y, Int. J. Radiat. Oncol. Biol. Phys. 10:341–348.Google Scholar
  24. Bolles, T. F., 1977. Suitability of Yb 169 DTPA for cisternography, Semi. Nucl. Med. 7: 201.Google Scholar
  25. Boucek, M. M., and Snyderman, R., 1976. Calcium influx requirements for human neutrophil Chemotaxis: inhibition by lanthanum chloride, Science 193:905–907.PubMedGoogle Scholar
  26. Bowser, B.H., Caldwell, F.T., Cone, J.B., Eisenach, K.D., and Thompson, C.H., 1981. A prospective analysis of silver sulfadiazine with and without cerium nitrate as a topical agent in the treatment of severely burned children, J. Trauma 21:558–563.PubMedGoogle Scholar
  27. Brasch, R.C., Weinmann, H. J., and Wesbey, G.E., 1984. Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex, Am. J. Radiol. 142:625–630.Google Scholar
  28. Browning, E., 1961. Toxicity of Industrial Metals, Butterworth, London.Google Scholar
  29. Burke, C.W., Doyle, F.H., Joplin, G.F., Arndt, R.N., Macerlean, D.P., and Fraser, T. R., 1973. Cushing’s disease: treatment by pituitary implantation of radioactive gold or yttrium seeds, Quart. J. Med. 42:693–714.PubMedGoogle Scholar
  30. Burnett, K.R., Wolf, G.L., Schumacher, H.R., and Goldstein, E.J., 1985. Gadolinium oxide: a prototype agent for contrast enhanced imaging of the liver and spleen with magnetic resonance, Magn. Reson. Imaging 3:65–71.PubMedGoogle Scholar
  31. Bydder, G.M., Kingsley, D.P., Brown, J., Niendorf, H.P., and Young, I.R., 1985. MR imaging of meningiomas, including studies with and without gadolinium-DTPA, J. Comput. Assist. Tomogr. 9:690–697.PubMedGoogle Scholar
  32. Caillé, J. M., Lemenceau, B., and Bonnemain, B., 1983. Gadolinium as a contrast agent for NMR, Am. J. Nucl. Med. 4:1041–1042.Google Scholar
  33. Carr, D.H., Brown, J., Leung, A.W., and Pennock, J.M., 1984a. Iron and gadolinium chelates as contrast agents in NMR imaging: preliminary studies, J. Comput. Assist. Tomogr. 8:385–389.PubMedGoogle Scholar
  34. Carr, D.H., Brown, J., Bydder, G.M., Steiner, R.E., Weinmann, H. J., Speck, U., Hall, A.S., and Young, LR., 1984b. Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients, Am. J. Radiol. 143:215–224.Google Scholar
  35. Cassar, J., Doyle, F. H., Lewis, P.D., Mashiter, K., Van Noorden, S., and Joplin, G.F., 1976. Treatment of Nelson’s syndrome by pituitary implantation of yttrium-90 or gold-108, Br. Med. J. 2:269–272.PubMedCentralPubMedGoogle Scholar
  36. Chandra, R., Hernberg, J., and Brauenstein, P., 1971. 167Tm: a new bone scanning agent, Radiology 100:687–689.PubMedGoogle Scholar
  37. Chatal, J. F., LeMevel, B.P., Guihard, R., Guihard, E., and Moigneteau, C., 1975. Intérêt diagnostique du citrate d’ytterbium 169 en cancérologie, J. Radiol. Electrol. 56:401–409.PubMedGoogle Scholar
  38. Claussen, C., Laniado, M., Kazner, E., Schorner, W., and Felix, R., 1985. Application of contrast agents in CT and MRI (NMR): their potential in imaging of brain tumors, Neuroradiology 27:164–171.PubMedGoogle Scholar
  39. Cooper, J. A.D., Bulkley, G.J., and O’Conor, V.J., 1956. Intraprostatic injection of radioactive yttrium chloride in the dog, in Rare Earths in Biochemical and Medical Research (G.C. Kyker and E.B. Anderson, eds.), U.S. Atomic Energy Commission, Report ORINS-12, pp. 323–331.Google Scholar
  40. Crone-Escanye, M.C., Anghileri, L. J., and Robert, J., 1985. Enhancement of hematoporphyrin derivative uptake in vitro and in vivo by tumor cells in the presence of lanthanum, Tumor 71:39–43.Google Scholar
  41. Crooker, B. A., Clark, J. H., and Shanks, R. D., 1982. Rare earth elements as markers for rate of passage measurements of individual feedstuffs through the digestive tract of ruminants, J. Nutr. 112:1353–1361.PubMedGoogle Scholar
  42. De La Chapelle, A., Oka, M., Rekonen, A., and Ruotsi, A., 1972. Chromosomal damage after intraarticular injection of radioactive yttrium. Effect of immobilization on the biological dose, Ann. Rheum. Dis. 31:508–512.PubMedCentralPubMedGoogle Scholar
  43. Deland, F. H., James, A.E., Wagner, H.N., and Hosain, F., 1971. Cisternography with 169Yb-DTPA, J. Nucl. Med. 12:683–689.PubMedGoogle Scholar
  44. Delgado, G., Butterfield, A. B., Dritschilo, A., Hummel, S., Harbert, J., Petrilli, E. S., and Kot, P.A., 1983. Measure of blood flow by the multiple radioactive microsphere technique in radiated gastrointestinal tissue, Am. J. Clin. Oncol. 6:463–467.PubMedGoogle Scholar
  45. Di Chiro, G., Knop, R.H., Girton, M.E., Dwyer, A.J., Doppman, J.L., Patronas, N.J., Gansow, O.A., Brechbiel, M.W., and Brooks, R.A., 1985. MR cisternography and myelography with Gd-DTPA in monkeys, Radiology 157:373–377.PubMedGoogle Scholar
  46. Divald, S., and Joullie, M. M., 1970. Coagulants and anticoagulants, in Medicinal Chemistry (A. Burger, ed.), 3rd ed., Part II, Wiley Interscience, New York, pp. 1092–1122.Google Scholar
  47. Dixon, R. M., Kennelly, J. J., and Milligan, L.P., 1983. Kinetics of 103Ru phenanthroline and dysprosium particulate markers in the rumen of steers, Br. J. Nutr. 49:463–473.PubMedGoogle Scholar
  48. Doge, H., and Johannsen, B. A., 1977. Radioactivity in gastric juice—a simple adjunct to the Yb-169 DTPA cisternography diagnosis of CSF rhinorrhea: concise communication, J. Nucl. Med. 18:1202–1204.PubMedGoogle Scholar
  49. Domotor, E., 1969. Treatment of first and second degree burns with phlogosam ointment, Ther. Hung. 17:40–43.PubMedGoogle Scholar
  50. Doyle, D. V., Glass, J. J., Grow, P. J., Daker, M., and Grahame, R., 1977. A clinical and prospective chromosomal study of yttrium-90 synovectomy, Rheumatol. Rehab. 16: 217–222.Google Scholar
  51. Dyckerhoff, H., and Goossens, N., 1939. Über die thromboseverhutende Wirkung des Neodyms (Neodympraparat “Amer 144”), Z. Exp. Med. 106:181–192.Google Scholar
  52. Ellis, K.J., 1977. The lanthanide elements in biochemistry, biology and medicine, Inorg. Perspect. Biol. Med. 1:101–135.Google Scholar
  53. Esposito, M., Oddone, M., Accardo, S., and Cutolo, M., 1986a. Concentrations of lanthanides in plasma and synovial fluid in rheumatoid arthritis, Clin. Chem. 32:1598.PubMedGoogle Scholar
  54. Esposito, M., Collecchi, P., Brera, S., Mora, E., Mazzucotelli, A., Cutolo, M., and Oddone, M., 1986b. Plasma and tissue levels of lanthanide elements in malignant and nonmalignant human tissues, Sci. Total Environ. 50:55–63.PubMedGoogle Scholar
  55. Evans, C. H., 1979. Enzyme inhibitors as possible therapeutic agents for arthritis, Orthop. Surv. 3:63–69.Google Scholar
  56. Evans, C. H., 1987. Alkaline earths, transition metals and lanthanides, in Calcium in Drug Actions (P. F. Baker, ed.), Springer-Verlag, Heidelberg, pp. 527–546.Google Scholar
  57. Evans, C.H., and Ridella, J.D., 1985. Inhibition, by lanthanides, of neutral proteinases secreted by human, rheumatoid synovium, Eur. J. Biochem. 151:29–32.PubMedGoogle Scholar
  58. Fasching, W., Wense, G., and Zangl, A., 1974. Résultats du traitement des cancers avancés du sein par l’implantation intrahypophysaire d’yttrium radioactif, Bull. Soc. Int. Chir. 2:81–84.Google Scholar
  59. Fox, C. L., Monafo, W. W., Ayvazian, V. N., Skinner, A. M., Modak, S., Stanford, J., and Condict, C., 1977. Topical chemotherapy for burns using cerium salts and silver sulfadiazine, Surg. Gynecol. Obstet. 144:668–672.PubMedGoogle Scholar
  60. Friedman, A.M., Sullivan, J.C., Ruby, S.L., Lindenbaum, A., Russell, J.J., Zabransky, B. J., and Rayudu, G. U., 1976. Studies of tumor metabolism—I: By use of Mössbauer spectroscopy and autoradiography of 153Sm, Int. J. Nucl. Med. Biol. 3:37–40.PubMedGoogle Scholar
  61. Frouin, A., and Roudsky, D., 1914. Action bactéricide et antitoxique des sels de lanthanum et de thorium sur le vibrion cholérique. Action thérapeutique de ces sels dans le choléra experimental, C. R. Acad. Sci. 159:410–413.Google Scholar
  62. Ginsburg, R., Davis, K., Bristow, M.R., McKennett, K., Kodsi, S.R., Billingham, M.E., and Schroeder, J. S., 1983. Calcium antagonists suppress atherogenesis in aorta but not in the intramural coronary arteries of cholesterol-fed rabbits, Lab. Invest. 49:154–158.PubMedGoogle Scholar
  63. Goldie, H., and West, H. D., 1956. Effect of peritumoral tissue infiltration with radioactive yttrium on growth and spread of malignant cells, Cancer Res. 16:484–489.PubMedGoogle Scholar
  64. Grenet, H., and Drouin, H., 1920. Les sels de terres de la série du cérium dans le traitement de la tuberculose pulmonaire chronique, Gaz. Hop. 93:789–791.Google Scholar
  65. Guidi, G., 1930. Contributo alla farmacologia delle terre rare; il neodimio, Arch. Int. Pharmacodyn. Ther. 37:305–348.Google Scholar
  66. Gumpel, J. M., Beer, T. C., Crawley, J. C., and Farran, H. E., 1975. Yttrium 90 in persistent synovitis of the knees: a single center comparison of four radiocolloids, Br. J. Radiol. 48:377–381.PubMedGoogle Scholar
  67. Gylys-Morin, V.M., Hajek, P.C., Sartoris, D. J., and Resnick, D., 1987. Articular cartilage defects: detectability in cadaver knees with MR, Am. J. Radiol. 148:1153–1157.Google Scholar
  68. Hansbrough, J. F., Zapata-Sirvent, R., Peterson, V., Wang, X., Bender, E., Claman, H., and Boswick, J., 1984. Characterization of the immunosuppressive effect of burned tissue in an animal model, J. Surg. Res. 37:383–393.PubMedGoogle Scholar
  69. Havron, A., Davis, M.A., Seiter, S.E., Paskins-Hurlburt, A.J., and Hessel, S.J., 1980. Heavy metal particulate contrast materials for computed tomography of the liver, J. Comput. Assist. Tomogr. 4:642–648.PubMedGoogle Scholar
  70. Heggers, J. P., Ko, F., and Robson, M.C., 1979. Cerium nitrate silver sulphadiazine: synergism or antagonism as determined by minimum inhibitory concentrations, Burns 5: 308–311.Google Scholar
  71. Helvig, E.I., Munster, A.M., Su, C.T., and Oppel, M., 1979. Cerium nitrate-silver sulfadiazine cream in the treatment of burns: a prospective, randomized study, Am. Surg. 45:270–272.PubMedGoogle Scholar
  72. Henry, P. D., and Bentley, K. I., 1981. Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine, J. Clin. Invest. 68:1366–1396.PubMedCentralPubMedGoogle Scholar
  73. Hermans, R. P., 1984. Topical treatment of serious infections with special reference to the use of a mixture of silver sulphadiazine and cerium nitrates: two clinical studies, Burns Incl. Therm. Inj. 11:59–62.PubMedGoogle Scholar
  74. Heywang, S. H., Hahn, D., Schmidt, H., Krischke, I., Eiermann, W., Bassermann, R., and Lissner, J., 1986. MR imaging of the breast using gadolinium-DTPA, J. Comput. Assist. Tomogr. 10:199–204.PubMedGoogle Scholar
  75. Higasi, T., Ito, K., Tobari, H., and Tomura, K., 1973. On the accumulation of rare earth elements in animal tumor, Int. J. Nucl. Med. Biol. 1:98–101.PubMedGoogle Scholar
  76. Hisada, K., and Ando, A., 1973. Radiolanthanides as promising tumor scanning agents, J. Nucl. Med. 14:615–617.PubMedGoogle Scholar
  77. Hisada, K., Tonami, N., Hiraki, T., and Ando, A., 1974. Tumor scanning with 169Yb-citrate, J. Nucl. Med. 15:210–212.PubMedGoogle Scholar
  78. Hisada, K., Suzuki, Y., Hiraki, T., Sanos, H., and Suzaki, K., 1975. Clinical evaluation of tumor scanning with 169Yb-citrate, Radiology 116:389–393.PubMedGoogle Scholar
  79. Holder, I.A., 1982. In vitro inactivation of silver sulphadiazine by the addition of cerium salts, Burns Incl. Therm. Inj. 8:274–277.PubMedGoogle Scholar
  80. Hosain, F., Reba, R. C., and Wagner, H.N., 1969. Measurement of glomerular filtration rate using chelated ytterbium 169, Int. J. Appl. Radiat. 20:517–521.Google Scholar
  81. Hubner, K.F., Andrews, G. A., Hayes, R. L., Poggenburg, J. K., and Solomon, A., 1977. The use of rare-earth radionuclides and other bone seekers in the evaluation of bone lesions in patients with multiple myeloma or solitary plasmacytoma, Radiology 125: 171–176.PubMedGoogle Scholar
  82. Hunter, R. B., and Walker, W., 1956. Anticoagulant action of neodymium 3-sulpho-isonic-otinate, Nature 178:47.PubMedGoogle Scholar
  83. Husztik, E., Lazar, G., and Parducz, A., 1980. Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride, Br. J. Exp. Pathol. 61:624–630.PubMedCentralPubMedGoogle Scholar
  84. Hutcheson, D.P., Venugopal, B., Gray, D.H., and Luckey, T., 1979. Lanthanide markers in a single sample for nutrient studies in humans, J. Nutr. 109:702–707.PubMedGoogle Scholar
  85. Jancso, H., 1962. Inflammation and the inflammatory mechanisms, J. Pharmacol. 13:577–594.Google Scholar
  86. Kramsch, D.M., and Chan, C.T., 1978. The effect of agents interfering with soft tissue calcification and cell proliferation on calcific fibrous-fatty plaques in rabbits, Circ. Res. 42:562–571.PubMedGoogle Scholar
  87. Kramsch, D., Aspen, A.J., and Apstein, C.S., 1980. Suppression of experimental atherosclerosis by the Ca2+-antagonist lanthanum. Possible role of calcium in atherogenesis, J. Clin. Invest. 65:967–981.PubMedCentralPubMedGoogle Scholar
  88. Kremer, B., Allgower, M., Graf, M., Schmidt, K. H., Schoetmerich, J., and Schoenen-berger, G. A., 1981. The present status of research in burn toxins, Intensive Care Med. 7:77–87.PubMedGoogle Scholar
  89. Kyker, G.C., Christopherson, W. M., Berg, H. F., and Brucer, M., 1956. Selective irradiation of lymph nodes by radiolutecium (Lu177), Cancer 9:489–498.PubMedGoogle Scholar
  90. Laniado, M., Weinmann, H. J., Schorner, W., Felix, R., and Speck, U., 1984. First use of GdDTPA/dimeglumine in man, Physiol. Chem. Phys. Med. N.M.R. 16:257–265.Google Scholar
  91. Laszlo, D., Ekstein, D. M., Lewin, R., and Stern, K. G., 1952. Biological studies on stable and radioactive rare earth compounds. 1. On the distribution of lanthanum in the mammalian organism, J. Natl. Cancer Inst. 13:559–571.PubMedGoogle Scholar
  92. Lazar, G., 1973. The reticuloendothelial-blocking effect of rare earth metals in rats, J. Reticuloendothel. Soc. 13:231–237.PubMedGoogle Scholar
  93. Lazar, G., and Karady, S., 1965. Traumatic and endotoxin shock in rats, J. Pharm. Pharmacol. 17:517–518.PubMedGoogle Scholar
  94. Lewin, R., Stern, K.G., Ekstein, D.M., Woidowsky, L., and Laszlo, D., 1953. Biological studies on stable and radioactive rare earth compounds. II. The effect of lanthanum on mice bearing Ehrlich ascites tumor, J. Natl. Cancer Inst. 14:45–56.PubMedGoogle Scholar
  95. Lewin, R., Hart, H. E., Greenberg, J., Spencer, H., Stern, K.G., and Laszlo, D., 1954. Biological studies on stable and radioactive rare earth compounds. III. Distribution of radioactive yttrium in normal and ascites-bearing mice and in cancer patients with serous effusions, 7. Natl. Cancer Inst. 15:131–143.Google Scholar
  96. Lippiello, L., Prellwitz, J., Schmetter, R., Connolly, J., and Quaife, M., 1984. Investigation of ytterbium-169 as a predictor of joint degeneration in osteoarthritis, Trans. Orthop. Res. Soc. 9:68.Google Scholar
  97. Manly, R. S., and Bibby, B.G., 1949. Substances capable of reducing the acid solubility of tooth enamel, J. Dent. Res. 43:346–352.Google Scholar
  98. Maxwell, L. C., Bischoff, F., and Ottery, E. M., 1931. Studies in cancer chemotherapy. X. The effect of thorium, cerium, erbium, yttrium, didymium, praseodymium, manganese and lead upon transplantable rat tumors, J. Pharmacol. Exp. Ther. 43:61–70.Google Scholar
  99. Mayer, S. W., and Morton, M. E., 1956. Preparation and distribution of yttrium 90 fluoride, in Rare Earths in Biochemical and Medical Research (G. C. Kyker and E. B. Anderson, eds.), U.S. Atomic Energy Commission, Report ORINS-12, pp. 263–279.Google Scholar
  100. McCarty, D.J., Palmer, D.W., and Halverson, P. B., 1979. Clearance of calcium pyrophosphate dihydrate crystals in vivo. I. Studies using 169Yb labeled triclinic crystals, Arthritis Rheum. 22:718–727.PubMedGoogle Scholar
  101. McNamara, M.T., Higgins, C.B., Ehman, R.L., Revel, D., Sievers, R., and Brasch, R.C., 1984. Acute myocardial ischemia: magnetic resonance contrast enhancement with gadolinium-DTPA, Radiology 153:157–163.PubMedGoogle Scholar
  102. McNamara, M.T., Brant-Zawadzki, M., Berry, I., Pereira, B., Weinstein, P., Derugin, N., Moore, S., Kucharczyk, W., and Brasch, R.C., 1986a. Acute experimental cerebral ischemia: MR enhancement using Gd-DTPA, Radiology 158:701–705.PubMedGoogle Scholar
  103. McNamara, M.T., Tscholakoff, D., Revel, D., Soulen, R., Schechtmann, N., Botvinick, E., and Higgins, C. B., 1986b. Differentiation of reversible and irreversible myocardial injury by MR imaging with and without gadolinium-DTPA, Radiology 158:765–769.PubMedGoogle Scholar
  104. Menkes, C.J., LeGo, A., Verrier, P., Aignan, M., and Delbarre, F., 1977. Double-blind study of erbium-169 injection in rheumatoid digital joints, Ann. Rheum. Dis. 36:254–256.PubMedCentralPubMedGoogle Scholar
  105. Mercado, R. C., and Ludwig, T. G., 1973. Effect of yttrium on dental caries in rats, Arch. Oral Biol. 18:637–640.Google Scholar
  106. Miller, L.P., 1959. Factors influencing the uptake and toxicity of fungicides, Trans. N.Y. Acad. Sci. 21:442–445.Google Scholar
  107. Mircevova, L., Viktora, L., and Hermanova, E., 1984. Inhibition of phagocytosis of polymorphonuclear leucocytes by adenosine and HoCl3 in vitro, Med. Biol. 62:326–330.Google Scholar
  108. Monafo, L., 1983. The use of topical cerium nitrate-silver sulfadiazine in major burn injuries, Panminerva Med. 25:151–156.PubMedGoogle Scholar
  109. Monafo, W.W., Tandon, S.N., Ayvazian, V.H., Tuchschmidt, J., Skinner, A.M., and Deitz, F., 1976. Cerium nitrate: a new topical antiseptic for extensive burns, Surgery 80:465–473.PubMedGoogle Scholar
  110. Munster, A. M., Helvig, E., and Rowland, S., 1980. Cerium nitrate-silver sulfadiazine cream in the treatment of burns: a prospective evaluation, Surgery 88:658–660.PubMedGoogle Scholar
  111. Muroma, A., 1958. Studies on the bactericidal action of salts of certain rare earth metals, Ann. Med. Exp. Biol. Fenn. 36(Suppl. 6): 1–54.PubMedGoogle Scholar
  112. Nadjmi, M., 1970. The long-term results after the stereotactic implantation of yttrium 90 into the pituitary gland as a treatment for Cushing-syndrome, Confin. Neurol. 32: 203–206.PubMedGoogle Scholar
  113. Northover, A. M., and Northover, B. J., 1985. Calcium ions in acute inflammation: a possible site for anti-inflammatory drug action, in Handbook of Inflammation, Vol. 5, The Pharmacology of Inflammation (I. L. Banta, M. A. Bray, and M. J. Parnham, eds.), Elsevier, New York, pp. 235–254.Google Scholar
  114. O’Flaherty, J.T., Showell, H.J., Becker, E.L., and Ward, P.A., 1978. Substances which aggregate neutrophils. Mechanism of action. Am. J. Pathol. 92:155–166.PubMedCentralPubMedGoogle Scholar
  115. Oka, M., 1975. Radiation synovectomy of the rheumatoid knee with yttrium 90, Ann. Clin. Res. 7:205–210.PubMedGoogle Scholar
  116. Pauwels, E. K. J., and Van Damme, K. J., 1974. An unexpected complication in the use of 167Yb-DTPA with respect to hospital health physics, Int. J. Nucl. Med. Biol. 1:228–229.PubMedGoogle Scholar
  117. Peterson, V. M., Hansbrough, J. F., Wang, X. W., Zapata-Sirvent, R., and Boswick, J. A., 1985. Topical cerium nitrate prevents postburn immunosuppression, J. Trauma 25: 1039–1044.PubMedGoogle Scholar
  118. Regolati, B., Schait, A., Schmid, R., and Muhlemann, H.R., 1975. Effect of enamel solubility reducing agents on erosion in the rat, Helv. Odontol. Acta 19:31–36.PubMedGoogle Scholar
  119. Rosenkranz, H. S., 1979. A synergism effect between cerium nitrate and silver sulphadiazine, Burns 5:278–281.Google Scholar
  120. Rouleau, J. L., Parmley, W. W., Stevens, J., Wilkman-Coffelt, J., Sievers, R., Mahley, R., and Havel, R. J., 1982. Verapamil suppresses atherosclerosis in cholesterol-fed rabbits, Am. J. Cardiol. 49:889.Google Scholar
  121. Runge, V.M., Clanton, J. A., Foster, M.A., Smith, F.W., Lukehart, C.M., Jones, M.M., Partain, C. L., and James, A. E., 1984. Paramagnetic NMR contrast agents. Development and evaluation, Invest. Radiol. 19:408–415.PubMedGoogle Scholar
  122. Russell, C.D., Bischoff, P.G., Katzen, F.N., Rowell, K.L., Yester, M.U., Lloyd, L.K., Tauxe, W. N., and Dubovsky, E.V., 1985. Measurement of the glomerular filtration rate: single injection plasma clearance method without urine collection, J. Nucl. Med. 26:1243–1247.PubMedGoogle Scholar
  123. Saffer, L.D., Rodeheaver, G.T., Hiebert, J.M., and Edlick, R.F., 1980. In vivo and in vitro antimicrobial activity of silver sulfadiazine and cerium nitrate, Surg. Gynecol. Obstet. 151:232–236.PubMedGoogle Scholar
  124. Schmidt, H. C., McNamara, M. T., Brasch, R. C., and Higgins, C. B., 1985. Assessment of severity of experimental pulmonary edema with magnetic resonance imaging. Effect of relaxation enhancement by Gd-DTPA, Invest. Radiol. 20:687–692.PubMedGoogle Scholar
  125. Schomacker, K., Franke, W. G., Henke, E., Fromm, W.D., Maka, G., and Beyer, G. J., 1986. The influence of isotopic and nonisotopic carriers on the biodistribution and biokinetics of M3+-citrate complexes, Eur. J. Nucl. Med. 11:345–349.PubMedGoogle Scholar
  126. Schorner, W., Kazner, E., Laniado, M., Sprung, C., and Felix, R., 1984. Magnetic resonance tomography (MRT) of intracranial tumors: initial experience with the use of the contrast medium gadolinium-DTPA, Neurosurg. Rev. 7:303–312.PubMedGoogle Scholar
  127. Siddons, R. C., Paradine, J., Beever, D. E., and Cornell, P. R., 1985. Ytterbium acetate as a particulate-phase digesta flow marker, Br. J. Nutr. 54:509–519.PubMedGoogle Scholar
  128. Sihvonen, M. L., 1972. Accumulation of yttrium and lanthanoids in human and rat tissues as shown by mass spectrometric analysis and some experiments with rats, Ann. Acad. Sci. Fenn. Ser. A 168:1–62.Google Scholar
  129. Sledge, C.B., Nolde, J., Hnatowich, D.J., Kramer, R., and Shortkroff, S., 1977. Experimental radiation synovectomy by 165Dy ferric hydroxide macroaggregate, Arthritis Rheum. 20:1334–1342.PubMedGoogle Scholar
  130. Sledge, C. B., Zuckerman, J. D., Zalutsky, M. R., Atcher, R. W., Shortkroff, S., Lionberger, D.R., Rose, H.A., Hurson, B.J., Lankenner, P.A., Anderson, R.J., and Bloomer, W. A., 1986. Treatment of rheumatoid synovitis of the knee with intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates, Arthritis Rheum. 29:153–159.PubMedGoogle Scholar
  131. Smith, B. M., Gindhart, T. D., and Colburn, N. H., 1986. Possible involvement of a lanthanide-sensitive protein kinase C substrate in lanthanide promotion of neoplastic transformation, Carcinogenesis 7:1949–1956.PubMedGoogle Scholar
  132. Sokoloff, L., 1963. Elasticity of articular cartilage: effects of ions and viscous solutions, Science 141:1055–1057.PubMedGoogle Scholar
  133. Spooren, P. F., Rasker, J. J., and Arens, R. P., 1985. Synovectomy of the knee with 90Y, Eur. J. Nucl. Med. 10:441–445.PubMedGoogle Scholar
  134. Stevenson, A. C., Hill, A. G. S., and Hills, H., 1971. Chromosome damage in patients who have had intraarticular injections of radioactive gold, Lancet 1: 837–839.PubMedGoogle Scholar
  135. Sullivan, J.C., Friedman, A.M., Rayudu, G.V., Fordham, E.W., and Ramachandran, P.C., 1975. Tumor localization studies with radioactive lanthanide and actinide complexes, Int. J. Nucl. Med. Biol. 2:44–45.PubMedGoogle Scholar
  136. Tarjan, G., Karika, Z., Pal, I., and Schweiger, O., 1975. The role of 169Yb-citrate in the diagnosis of lung tumors, Nucl. Med. 13:267–271.Google Scholar
  137. Vinger, E.C., Totty, W.G., Neufeld, D.M., Otsuka, F.L., Murphy, W. A., Welch, M.S., Connett, J. M., and Philpott, G. W., 1985. Magnetic resonance imaging using gadolinium labeled monoclonal antibody, Invest. Radiol. 20:693–700.Google Scholar
  138. Vincke, E., and Oelkers, H. A., 1937. Zur pharmacologie der seltenen Erden: Workung auf die Blutgerinnung, Arch. Exp. Pathol. 187:594–603.Google Scholar
  139. Vincke, E., and Sucker, E., 1950. Über ein neues antithromboticum das neodymsulfoiso-nicotinat, Klin. Wochenschr. 28:74–75.Google Scholar
  140. Wagner, H. N., Hosain, F., DeLand, F. H., and Som, P., 1970. A new radiopharmaceutical for cisternography: chelated ytterbium 169, Radiology 95:121–125.PubMedGoogle Scholar
  141. Waler, S.M., and Rolla, G., 1983. Effect of Chlorhexidine and lanthanum on plaque formation, Scand. J. Dent. Res. 91:260–262.PubMedGoogle Scholar
  142. Weinmann, H.-J., Brasch, R. C., Press, W. R., and Wesbey, G. E., 1984. Characteristics of gadolinium-DTPA complex: a potential NMR contrast agent, Am. J. Radiol. 142:619–624.Google Scholar
  143. Wolf, G. L., and Fobben, E. S., 1984. The tissue proton T1 and T2 response to gadolinium DTPA injection in rabbits. A potential renal contrast agent for NMR imaging, Invest. Radiol. 19:324–328.PubMedGoogle Scholar
  144. Woolfenden, J.M., Hall, J.N., Barber, H.B., and Wacks, M.E., 1983. [153Sm] citrate for tumor and abscess localization, Int. J. Nucl. Med. Biol. 10:251–256.PubMedGoogle Scholar
  145. Wozniak, R. D., 1970. Efficiency of phlogosam in the treatment of eczema, Ther. Hung. 18:111–112.PubMedGoogle Scholar
  146. Yano, Y., and Chu, P., 1975. Cyclotron-produced thulium-169 for bone and tumor scanning, Int. J. Nucl. Med. Biol. 2:135–139.PubMedGoogle Scholar
  147. Zapata-Sirvent, R. L., Hansbrough, J. F., Bendo, E. M., Bartle, E. J., Mansour, M. A., and Carter, W.H., 1986. Postburn immunosuppression in an animal model. IV. Improved resistance to septic challenge with immunomodulating drugs, Surgery 99:53–58.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. H. Evans
    • 1
  1. 1.The Ferguson LaboratoryUniversity of PittsburghPittsburghUSA

Personalised recommendations