Skip to main content

Interactions of Lanthanides with Other Molecules of Biochemical Interest

  • Chapter
Biochemistry of the Lanthanides

Part of the book series: Biochemistry of the Elements ((BOTE,volume 8))

  • 282 Accesses

Abstract

Two main motives have encouraged studies of the interactions of the lanthanides with mononucleosides and mononucleotides. The first follows from the realization that the metabolically active forms of many nucleotides are ones in which a metal ion is coordinated. Best studied is the ATP-Mg complex which forms the physiologically active substrate for ATP-requiring reactions. As Mg2+, like Ca2+, is spectroscopically un-informative, it, too, has been replaced by Ln3+ ions for experimental studies. The second motive has been to use paramagnetic lanthanides in NMR spectroscopic investigations aimed at determining the solution structures of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alpha, S. R., and Brady, A. H., 1973. Optical activity and conformation of the cation carrier X537A, J. Am. Chem. Soc. 95:7043–7049.

    Article  PubMed  CAS  Google Scholar 

  • Angyal, S.J., 1972. Complexes of carbohydrates with metal cations. I. Determination of the extent of complexing by NMR spectroscopy, Aust. J. Chem. 25:1957–1966.

    Article  CAS  Google Scholar 

  • Anthonsen, T., Larsen, B., and Smidsrod, O., 1972. NMR-studies of the interaction of metal ions with poly(l,4-hexuronates). I. Chelation of europium ions by D-galacturonic acid, Acta Chem. Scand. 26:2988–2989.

    Article  CAS  Google Scholar 

  • Anthonsen, T., Larsen, B., and Smidsrod, O., 1973. NMR-studies of the interaction of metal ions with poly(l,4-hexuronates). II. The binding of europium ions to sodium methyl α-D-galactopyranosiduronate, Acta Chem. Scand. 27:2671–2673.

    Article  PubMed  CAS  Google Scholar 

  • Arquilla, M., Thompson, L. M., Pearlman, L. F., and Simpkins, H., 1983. Effect of platinum antitumor agents on DNA and RNA investigated by terbium fluorescence, Cancer Res. 43:1211–1216.

    PubMed  CAS  Google Scholar 

  • Assmann, G., Sokoloski, E. A., and Brewer, H.B., 1974. 31P nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc. Natl. Acad. Sci. USA 71: 549–553.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balt, S., DeBolster, M. W., and Visser-Luirink, G., 1983. A 13C-n.m.r. study of the binding of ytterbium (III) to chondroitin sulphate and chondroitin, Carbohydr. Res. 121:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Barela, T.D., Burchett, S., and Kizer, D.E., 1975. Terbium binding to ribosomes and ribosomal RNA, Biochemistry 14:4887–4892.

    Article  PubMed  CAS  Google Scholar 

  • Barry, C.D., North, A.C. T., Glasel, J. A., Williams, R.J. P., and Xavier, A.V., 1971. Quantitative determinations of mononucleotide conformations in solution using lanthanide ion shift and broadening NMR probes, Nature 232:236–245.

    Article  PubMed  CAS  Google Scholar 

  • Barry, C. D., Glasel, J. A., North, A. C. T., Williams, R. J. P., and Xavier, A. V., 1972. The quantitative conformations of some dinucleoside phosphates in solution, Biochim. Bio-phys.Acta 262:101–107.

    Article  CAS  Google Scholar 

  • Barry, C.D., Glasel, J. A., Williams, R.J. P., and Xavier, A. V., 1974a. Quantitative determination of conformations of flexible molecules in solution using lanthanide ions as nuclear magnetic resonance probes: application to adenosine-5’-monophosphate, J. Mol. Biol. 84:471–490.

    Article  PubMed  CAS  Google Scholar 

  • Barry, C.D., Martin, D.R., Williams, R.J. P., and Xavier, A. V., 1974b. Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes, J. Mol. Biol. 84:491–502.

    Article  PubMed  CAS  Google Scholar 

  • Bayley, P., and Debenham, P., 1974. The effect of lanthanide ions on the conformation of adenine mononucleotides and dinucleotides, Eur. J. Biochem. 43:561–568.

    Article  PubMed  CAS  Google Scholar 

  • Beattie, J. K., and Kelso, M.T., 1981. Equilibrium and dynamiC.S of the binding of calcium ion to sorbitol (D-glucitol), Aust. J. Chem. 34:2563–2568.

    Article  CAS  Google Scholar 

  • Birdsall, B., Birdsall, N.J. M., Feeney, J., and Thornton, J., 1975. A nuclear magnetic resonance investigation of the conformation of nicotinamide mononucleotide in aqueous solution, J. Am. Chem. Soc. 97:2845–2850.

    Article  PubMed  CAS  Google Scholar 

  • Bratt, G.T., and Hogenkamp, H.P., 1982. The interaction of cyanocolbamin and some of its analogs with manganese(II) and gadolinium(III), Arch. Biochem. Biophys. 218:225–232.

    Article  PubMed  CAS  Google Scholar 

  • Burns, V.W., 1985. Heavy-atom effects on energy transfer from polynucleotides to ter-bium(III), Biopolymers 24:1293–1300.

    Article  PubMed  CAS  Google Scholar 

  • Chargaff, E., Vischer, E., Doninger, R., Green, C., and Misani, F., 1949. The composition of the desoxypentose nucleic acids of thymus and spleen, J. Biol. Chem. 177:405–416.

    PubMed  CAS  Google Scholar 

  • Chen, S.T., and Springer, C.S., 1978. Interaction of antibiotic lasalocid A (X537A) with praseodymium(III) in methanol, Bioinorg. Chem. 9:101–122.

    Article  PubMed  CAS  Google Scholar 

  • Daman, M.E., and Dill, K., 1982. 13C-n.m.r.-spectraI study of the binding of Gd3+ to glycophorin, Carbohydr. Res. 111:205–214.

    Article  Google Scholar 

  • Davis, S.A., and Richardson, F.S., 1980. Circularly polarized luminescence induced by terbium-nucleoside interactions in aqueous solution, J. Inorg. Nucl. Chem. 42:1793–1795.

    Article  CAS  Google Scholar 

  • Dill, K., Daman, M.E., Batstone-Cunningham, R. L., Lacombe, J. M., and Pavia, A.A., 1983a. 13C-n.m.r.-spectral study of the mode of binding of Gd3+ to various glycopep-tides, Carbohydr. Res. 123:123–135.

    Article  PubMed  CAS  Google Scholar 

  • Dill, K., Daman, M. E., Batstone-Cunningham, R. L., Denarie, M., and Pavia, A. A., 1983b. l3C-n.m.r.spectral study of the mode of binding of Gd3+ and Mn2+ to a tri-O-D-gal-actosylated hexapeptide, Carbohydr. Res. 123:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, C.M., Geraldes, C.F.G.C., Ratcliffe, G., and Williams, R.J. P., 1978. Nuclear-magnetic-resonance studies of 5’-ribonucleotide and 5′-deoxyribonucleotide conformation in solution using the lanthanide probe method, Eur. J. Biochem. 88:259–266.

    Article  PubMed  CAS  Google Scholar 

  • Draper, D.E., 1985. On the coordination properties of Eu3+ bound to tRNA, Biophys. Chem. 21:91–101.

    Article  PubMed  CAS  Google Scholar 

  • Eads, C.D., Mulqueen, P., Horrocks, W. D., and Villafranca, J. J., 1984. Characterization of ATP complexes with lanthanide(III) ions, J. Biol. Chem. 259:9379–9383.

    PubMed  CAS  Google Scholar 

  • Ellis, K. J., and Morrison, J. F., 1974. The interaction of europium(III) ion with nucleotides, Biochim. Biophys. Acta 362:201–208.

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley, G. V., and Reid, D.G., 1979. Determination of the interaction of ADP and dADP with copper(II), manganese(II) and lanthanide(III) ions by nuclear-magnetic-resonance spectroscopy, Eur. J. Biochem. 93:535–563.

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley, G. V., Russell, J.C., and Wolfe, M.A., 1977a. Determination of the syn-anti equilibrium of some purine 3’:5’-nucleotides by nuclear-magnetic relaxation perturbation in the presence of a lanthanide-ion probe, Eur. J. Biochem. 76:601–605.

    Article  PubMed  CAS  Google Scholar 

  • Fazakerley, G. V., Linder, P. W., and Reid, D.G., 1977b. Determination of the solution conformation of dephospho coenzyme A by nuclear-magnetic-resonance spectroscopy with lanthanide probes. A method for analysis when more than one complex species is present, Eur. J. Biochem. 81:507–514.

    Article  PubMed  CAS  Google Scholar 

  • Formoso, C., 1973. Fluorescence of nucleic acid-terbium(III) complexes, Biochem. Biophys. Res. Commun. 53:1084–1087.

    Article  PubMed  CAS  Google Scholar 

  • Galea, J., Beccaria, R., Ferroni, G., and Belaich, J. P., 1978. Thermodynamic studies on formation of europium(III)-adenine nucleotide complexes, Electrochim. Acta 23:647–652.

    Article  CAS  Google Scholar 

  • Geraldes, C. F. G. C., 1979. Nuclear magnetic resonance study of the solution conformation of adenine mononucleotides using the lanthanide probe method, J. Magn. Reson. 36: 89–98.

    CAS  Google Scholar 

  • Geraldes, C. F. G. C., and Williams, R. J. P., 1978. Nucleotide torsional flexibility in solution and the use of lanthanides as nuclear-magnetic-resonance conformational probes. The case of adenosine-5′-monophosphate, Eur. J. Biochem. 85:463–470.

    Article  PubMed  CAS  Google Scholar 

  • Gersanovski, D., Colson, P., Houssier, C., and Fredericq, E., 1985. Terbium3+ as a probe of nucleic acids structure. Does it alter the DNA conformation in solution? Biochim. Biophys. Acta 824:313–323.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D.S., and Simpkins, H., 1981. Evidence for two-site binding in the terbium(III)-nucleic acid interaction, J. Biol. Chem. 256:9593–9598.

    PubMed  CAS  Google Scholar 

  • Gross, D. S., Rice, S. W., and Simpkins, H., 1981. Influence of inorganic cations and histone proteins on the terbium(III)-nucleic acid interaction, Biochim. Biophys. Acta 656:167–176.

    Article  PubMed  CAS  Google Scholar 

  • Gross, D. S., Simpkins, H., Bubienko, E., and Borer, P. N., 1982. Proton magnetic resonance analysis of terbium ion-nucleic acid complexes: further evidence for two-site binding to polynucleotides, Arch. Biochem. Biophys. 219:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Gutman, M., and Levy, M.A., 1983. Fluorescence decay time measurements of Eu3+ -ATP-enzyme complexes. Replacement of the metal hydration water by active site ligands, J. Biol. Chem. 258:12132–12134.

    PubMed  CAS  Google Scholar 

  • Haertlé, T., Kretschmer, E., and Augustyniak, J., 1980. Tb3+ as a marker in studies of tRNA interactions, in Biological Implications of Protein-Nucleic Acid Interactions (J. Augustyniak, ed.), A. Mickiewicz University Press, Poznan, Poland, pp. 629–633.

    Google Scholar 

  • Haertlé, T., Augustyniak, J., and Guschlbauer, W., 1981. Is Tb3+ fluorescence enhancement only due to binding to single strand polynucleotides? Nucleic Acids Res. 9:6191–6197.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hanna, D.A., Yeh, C., Shaw, J., and Everett, G. W., 1983. Gadolinium(III) and man-ganese(II) binding by a polyether ionophore. Influence of cation charge and solvent polarity on the binding sites of lasalocid A (X-537A), Biochemistry 22:5619–5626.

    Article  CAS  Google Scholar 

  • Holbrook, S.R., Sussman, J.L., Warrant, R.W., Church, G.M., and Kim, S.H., 1977. RNA-ligand interactions: (1) magnesium binding sites in yeast tRNAPhe, Nucleic Acids Res. 4:2811–2820.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horrocks, W.DeW., 1982. Lanthanide ion probes of biomolecular structure, in Advances in Inorganic Biochemistry (G. L. Eichhorn and L. G. Marzilli, eds.), Vol. 4, Elsevier, New York, pp. 201–261.

    Google Scholar 

  • Horrocks, D.DeW., and Hove, E.G., 1978. Water soluble lanthanide porphyrins: shift reagents for aqueous solutions, J. Am. Chem. Soc. 100:4386–4392.

    Article  CAS  Google Scholar 

  • Horrocks, W.DeW., and Wong, C.P., 1976. Lanthanide porphyrin complexes. Evaluation of nuclear magnetic resonance dipolar probe and shift reagent capabilities, J. Am. Chem. Soc. 98:7157–7162.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks, W. DeW., Venteicher, R. F., Spilburg, C. A., and Vallée, B. L., 1975. Lanthanide porphyrin probes of heme proteins. Insertion of ytterbium (III) mesoporphyrin IX into apomyoglobin, Biochem. Biophys. Res. Commun. 64:317–322.

    Article  PubMed  CAS  Google Scholar 

  • Houssier, C., Maquet, M.N., and Fredericq, E., 1983. Denaturation level of DNA-Pt complexes evidenced by Tb3+ fluorescence enhancement and electric dichroism, Biochim. Biophys. Acta 739:312–316.

    Article  PubMed  CAS  Google Scholar 

  • Inagaki, F., Tasumi, M., and Miyazawa, T., 1978. Structures and populations of conformers of nucleoside monophosphates in aqueous solution. I. General methods of conformational search with lanthanide-ion probes and spin-coupling constants and application to uridine-5’-monophosphate, Biopolymers 17:267–289.

    Article  CAS  Google Scholar 

  • Izatt, R. M., Christensen, J. J., and Rytting, J.H., 1971. Sites and thermodynamic quantities associated with proton and metal ion interactions with ribonucleic acid, deoxyribonucleic acid and their constituent bases, nucleosides and nucleotides, Chem. Rev. 71: 439–481.

    Article  PubMed  CAS  Google Scholar 

  • Izumi, K., 1980. Carbon-13 NMR spectra of sodium D-gluco- and D-galactopyranuronates in the presence of lanthanide ions, Agric. Biol. Chem. 44:1623–1631.

    Article  CAS  Google Scholar 

  • Jack, A., Ladner, J.E., Rhodes, D., Brown, R. S., and Klug, A., 1977. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA, J. Mol. Biol. 111:315–328.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C.R., and Kearns, D.R., 1974. Investigation of the structure of yeast tRNAPhe by nuclear magnetic resonance: paramagnetic rare earth ion probes of structure, Proc. Natl. Acad. Sci. USA 71:4237–4240.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kayne, M. S., and Cohn, M., 1972. Cation requirements of isoleucyl-RNA synthetase from Escherichia coli, Biochem. Biophys. Res. Commun. 46:1285–1291.

    Article  CAS  Google Scholar 

  • Kayne, M.S., and Cohn, M., 1974. Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA, Biochemistry 13:4159–4165.

    Article  PubMed  CAS  Google Scholar 

  • Kearns, D.R., and Bolton, P. H., 1978. Proton probes of the tertiary structure of transfer RNA molecules, in Biomolecular Structure and Function (B. Pullman, ed.), Academic Press, New York, pp. 493–516.

    Chapter  Google Scholar 

  • Kieboom, A.P.G., Sinnema, A., Van der Toorn, J.M., and Van Bekkum, H., 1977.,3C NMR study of the complex formation of sorbitol (glucitol) with multivalent cations in aqueous solution using lanthanide(III) nitrates as shift reagents, Reel. Trav. Chim. Pays-Bas 96:35–37.

    Article  CAS  Google Scholar 

  • Lavallee, D. K., and Zeltmann, A. H., 1974. Conformation of cyclic /3-adenosine 3’,5’-phosphate in solution using the lanthanide shift technique. J. Am. Chem. Soc. 96: 5552–5556.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. Y., and Raszka, M. J., 1975. Determination of solution structure of diphosphopyridine coenzymes with paramagnetic shift and broadening reagents, J. Magn. Reson. 17: 151–160.

    CAS  Google Scholar 

  • Martin, R. B., 1983. Structural chemistry of calcium: lanthanides as probes, in Calcium in Biology (T.G. Spiro, ed.), Wiley, New York, pp. 237–270.

    Google Scholar 

  • Morley, P. J., Martin, R. B., and Boatman, S., 1981. Characterization of excitation spectra for Tb3+ luminescence from nucleic acids: calcium binding environs in icosahedral viruses, Biochem. Biophys. Res. Commun. 101:1123–1130.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, J. F., and Cleland, W. W., 1983. Lanthanide-adenosine 5’-triphosphate complexes: determination of their dissociation constants and mechanism of action as inhibitors of yeast hexokinase, Biochemistry 22:5507–5513.

    Article  CAS  Google Scholar 

  • Pavlick, D., and Formoso, C., 1978. Lanthanide fluorescence studies of transfer (MATH) conformation, Biochemistry 17:1537–1540.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, D.R., Reed, P. W., and Lardy, H.A., 1974. Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187 and its metal ion complexes, Biochemistry 13:4007–4014.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, F. S., and Gupta, A.D., 1981. Spectroscopic studies on the interaction of the antibiotic lasalocid A (X537A) with lanthanide(III) ions in methanol, J. Am. Chem. Soc. 103:5716–5725.

    Article  CAS  Google Scholar 

  • Ringer, D. P., Burchett, S., and Kizer, D. E., 1978. Use of Tb(III) fluorescence enhancement to selectively monitor DNA and RNA guanine residues and their alteration by chemical modification, Biochemistry 17:4818–4824.

    Article  PubMed  CAS  Google Scholar 

  • Ringer, D. P., Howell, B. A., and Kizer, D. E., 1980. Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA, Anal. Biochem. 103:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Ringer, D. P., Etheredge, J. L., and Kizer, D. E., 1985. The influence of DNA sequence on terbium(III) fluorescence enhancement by DNA, J. Inorg. Biochem. 24:137–145.

    Article  PubMed  CAS  Google Scholar 

  • Robertus, J.D., Ladner, J.E., Finch, J. T., Rhodes, D., Brown, R.S., Clark, B.F.C., and Klug, A., 1974. Structure of yeast phenylalanine tRNA at 3Ä resolution, Nature 250: 546–551.

    Article  PubMed  CAS  Google Scholar 

  • Robins, M. J., MacCoss, M., and Wilson, J.S., 1977. Nucleic acid related compounds 27. “Virtual coupling” of the anomeric proton of cyclic 2’-deoxynucleoside 3′,5′-mono-phosphates. Reassessment of conformation using praseodymium shifts and assignment of H-2′ 2″ signals by biomimetic deuteration at ∈ 2′ J. Am. Chem. Soc. 99:4660–4666.

    Article  PubMed  CAS  Google Scholar 

  • Rordorf, B. F., and Kearns, D. R., 1976. Effect of europium(III) on the thermal denaturation and cleavage of transfer ribonucleic acids, Biopolymers 15:1491–1504.

    Article  PubMed  CAS  Google Scholar 

  • Sarna, T., Hyde, J. S., and Swartz, H. M., 1976. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes, Science 192:1132–134.

    Article  PubMed  CAS  Google Scholar 

  • Shastri, B. P., Sankaram, M. B., and Easwaran, K. R., 1987. Carboxylic ionophore (lasalocid A and A23187)-mediated lanthanide ion transport across phospholipid vesicles, Biochemistry 26:4925–4930.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, T., Mims, W. B., Peisach, J., and Davis, J. L., 1979. Analysis of the electron spin echo decay envelope for Nd3+: ATP complexes, J. Chem. Phys. 76:2249–2254.

    Article  Google Scholar 

  • Shimizu, T., Mims, W. B., Davis, J. L., and Peisach, J., 1983. Studies of the coordination of rare earths and transition metal nucleotide complexes by an electron spin echo method, Biochim. Biophys. Acta 757:29–39.

    Article  CAS  Google Scholar 

  • Simpkins, H., and Pearlman, L. F., 1984. The binding of actinomycin D and adriamycin to supercoiled DNA, single-stranded DNA and polynucleotides, Biochim. Biophys. Acta 783:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Simpkins, H., Pearlman, L. F., and Thompson, L. M., 1984. Effects of adriamycin on supercoiled DNA and calf thymus nucleosomes studied with fluorescent probes, Cancer Res. 44:613–618.

    PubMed  CAS  Google Scholar 

  • Smith, R. V., Erhardt, P.W., Rusterholz, D.B., and Barfknecht, C.F., 1976. NMR study of amphetamines using europium shift reagents, J. Pharm. Sci. 65:412–417.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, T. S., 1980. Gadolinium(III) myoglobin: interaction of gadolinium(III) mesoporphyrin IX with apomyoglobin, Curr. Sci. 49:429–430.

    CAS  Google Scholar 

  • Stokke, T., and Steen, H. B., 1985. Neither adriamycin nor actinomycin D displaces Tb3+ from DNA, Biochim. Biophys. Acta 825:416–418.

    Article  PubMed  CAS  Google Scholar 

  • Stout, C.D., Mizuno, H., Rao, S.T., Swaminathan, P., Rubin, J., Brenan, T., and Sunderalingham, M., 1978. Crystal and molecular structure of yeast phenylalanine transfer RNA. Structure determination, difference Fourier refinement, molecular conformation, metal and solvent binding, Acta Crystallogr. B34:1529–1544.

    Article  CAS  Google Scholar 

  • Suddarth, F. L., Quigley, G.J., McPherson, A., Sneden, D., Kim, J. J., Kim, S.H., and Rich, A., 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0Å resolution, Nature 248:20–24.

    Article  Google Scholar 

  • Tanswell, P., Thornton, J.M., Korda, A.V., and Williams, R.J.P., 1975. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes, Eur. J. Biochem. 57:135–145.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, L. M., Arquilla, M., and Simpkins, H., 1982. The interaction of platinum complexes with nucleosomes investigated with fluorescent probes, Biochim. Biophys. Acta 698:173–182.

    Article  PubMed  CAS  Google Scholar 

  • Topal, M. D., and Fresco, J. R., 1980. Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaved residues in nucleic acids, Biochemistry 19:5531–5537.

    Article  PubMed  CAS  Google Scholar 

  • Velapoldi, R. A., and Menis, O., 1971. Formation and stabilities of free bilirubin complexes with transition and rare-earth elements, Clin. Chem. 17:1165–1170.

    PubMed  CAS  Google Scholar 

  • Wolfson, J. M., and Kearns, D. R., 1975. Europium as a fluorescent probe of transfer RNA, Biochemistry 14:1436–1444.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, S., Inagaki, F., and Miyazawa, T., 1981. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures, Biochemistry 20:2981–2988.

    Article  PubMed  CAS  Google Scholar 

  • Yonuschot, G., and Mushrush, G. W., 1975. Terbium as a fluorescent probe for DNA and chromatin, Biochemistry 14:1677–1678.

    Article  PubMed  CAS  Google Scholar 

  • Yonuschot, G., Robey, G., Mushrush, G. W., Helman, D., and Van de Woude, G., 1978. Measurement of binding of terbium to DNA, Bioinorg. Chem. 8:397–404.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Evans, C.H. (1990). Interactions of Lanthanides with Other Molecules of Biochemical Interest. In: Biochemistry of the Lanthanides. Biochemistry of the Elements, vol 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8748-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8748-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8750-3

  • Online ISBN: 978-1-4684-8748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics