Interactions of Lanthanides with Other Molecules of Biochemical Interest

  • C. H. Evans
Part of the Biochemistry of the Elements book series (BOTE, volume 8)


Two main motives have encouraged studies of the interactions of the lanthanides with mononucleosides and mononucleotides. The first follows from the realization that the metabolically active forms of many nucleotides are ones in which a metal ion is coordinated. Best studied is the ATP-Mg complex which forms the physiologically active substrate for ATP-requiring reactions. As Mg2+, like Ca2+, is spectroscopically un-informative, it, too, has been replaced by Ln3+ ions for experimental studies. The second motive has been to use paramagnetic lanthanides in NMR spectroscopic investigations aimed at determining the solution structures of these molecules.


Circular Dichroism Circular Dichroism Spectrum Phosphate Moiety Shift Reagent Anticodon Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpha, S. R., and Brady, A. H., 1973. Optical activity and conformation of the cation carrier X537A, J. Am. Chem. Soc. 95:7043–7049.CrossRefPubMedGoogle Scholar
  2. Angyal, S.J., 1972. Complexes of carbohydrates with metal cations. I. Determination of the extent of complexing by NMR spectroscopy, Aust. J. Chem. 25:1957–1966.CrossRefGoogle Scholar
  3. Anthonsen, T., Larsen, B., and Smidsrod, O., 1972. NMR-studies of the interaction of metal ions with poly(l,4-hexuronates). I. Chelation of europium ions by D-galacturonic acid, Acta Chem. Scand. 26:2988–2989.CrossRefGoogle Scholar
  4. Anthonsen, T., Larsen, B., and Smidsrod, O., 1973. NMR-studies of the interaction of metal ions with poly(l,4-hexuronates). II. The binding of europium ions to sodium methyl α-D-galactopyranosiduronate, Acta Chem. Scand. 27:2671–2673.CrossRefPubMedGoogle Scholar
  5. Arquilla, M., Thompson, L. M., Pearlman, L. F., and Simpkins, H., 1983. Effect of platinum antitumor agents on DNA and RNA investigated by terbium fluorescence, Cancer Res. 43:1211–1216.PubMedGoogle Scholar
  6. Assmann, G., Sokoloski, E. A., and Brewer, H.B., 1974. 31P nuclear magnetic resonance spectroscopy of native and recombined lipoproteins, Proc. Natl. Acad. Sci. USA 71: 549–553.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Balt, S., DeBolster, M. W., and Visser-Luirink, G., 1983. A 13C-n.m.r. study of the binding of ytterbium (III) to chondroitin sulphate and chondroitin, Carbohydr. Res. 121:1–11.CrossRefPubMedGoogle Scholar
  8. Barela, T.D., Burchett, S., and Kizer, D.E., 1975. Terbium binding to ribosomes and ribosomal RNA, Biochemistry 14:4887–4892.CrossRefPubMedGoogle Scholar
  9. Barry, C.D., North, A.C. T., Glasel, J. A., Williams, R.J. P., and Xavier, A.V., 1971. Quantitative determinations of mononucleotide conformations in solution using lanthanide ion shift and broadening NMR probes, Nature 232:236–245.CrossRefPubMedGoogle Scholar
  10. Barry, C. D., Glasel, J. A., North, A. C. T., Williams, R. J. P., and Xavier, A. V., 1972. The quantitative conformations of some dinucleoside phosphates in solution, Biochim. Bio-phys.Acta 262:101–107.CrossRefGoogle Scholar
  11. Barry, C.D., Glasel, J. A., Williams, R.J. P., and Xavier, A. V., 1974a. Quantitative determination of conformations of flexible molecules in solution using lanthanide ions as nuclear magnetic resonance probes: application to adenosine-5’-monophosphate, J. Mol. Biol. 84:471–490.CrossRefPubMedGoogle Scholar
  12. Barry, C.D., Martin, D.R., Williams, R.J. P., and Xavier, A. V., 1974b. Quantitative determination of the conformation of cyclic 3′,5′-adenosine monophosphate in solution using lanthanide ions as nuclear magnetic resonance probes, J. Mol. Biol. 84:491–502.CrossRefPubMedGoogle Scholar
  13. Bayley, P., and Debenham, P., 1974. The effect of lanthanide ions on the conformation of adenine mononucleotides and dinucleotides, Eur. J. Biochem. 43:561–568.CrossRefPubMedGoogle Scholar
  14. Beattie, J. K., and Kelso, M.T., 1981. Equilibrium and dynamiC.S of the binding of calcium ion to sorbitol (D-glucitol), Aust. J. Chem. 34:2563–2568.CrossRefGoogle Scholar
  15. Birdsall, B., Birdsall, N.J. M., Feeney, J., and Thornton, J., 1975. A nuclear magnetic resonance investigation of the conformation of nicotinamide mononucleotide in aqueous solution, J. Am. Chem. Soc. 97:2845–2850.CrossRefPubMedGoogle Scholar
  16. Bratt, G.T., and Hogenkamp, H.P., 1982. The interaction of cyanocolbamin and some of its analogs with manganese(II) and gadolinium(III), Arch. Biochem. Biophys. 218:225–232.CrossRefPubMedGoogle Scholar
  17. Burns, V.W., 1985. Heavy-atom effects on energy transfer from polynucleotides to ter-bium(III), Biopolymers 24:1293–1300.CrossRefPubMedGoogle Scholar
  18. Chargaff, E., Vischer, E., Doninger, R., Green, C., and Misani, F., 1949. The composition of the desoxypentose nucleic acids of thymus and spleen, J. Biol. Chem. 177:405–416.PubMedGoogle Scholar
  19. Chen, S.T., and Springer, C.S., 1978. Interaction of antibiotic lasalocid A (X537A) with praseodymium(III) in methanol, Bioinorg. Chem. 9:101–122.CrossRefPubMedGoogle Scholar
  20. Daman, M.E., and Dill, K., 1982. 13C-n.m.r.-spectraI study of the binding of Gd3+ to glycophorin, Carbohydr. Res. 111:205–214.CrossRefGoogle Scholar
  21. Davis, S.A., and Richardson, F.S., 1980. Circularly polarized luminescence induced by terbium-nucleoside interactions in aqueous solution, J. Inorg. Nucl. Chem. 42:1793–1795.CrossRefGoogle Scholar
  22. Dill, K., Daman, M.E., Batstone-Cunningham, R. L., Lacombe, J. M., and Pavia, A.A., 1983a. 13C-n.m.r.-spectral study of the mode of binding of Gd3+ to various glycopep-tides, Carbohydr. Res. 123:123–135.CrossRefPubMedGoogle Scholar
  23. Dill, K., Daman, M. E., Batstone-Cunningham, R. L., Denarie, M., and Pavia, A. A., 1983b. l3C-n.m.r.spectral study of the mode of binding of Gd3+ and Mn2+ to a tri-O-D-gal-actosylated hexapeptide, Carbohydr. Res. 123:137–144.CrossRefPubMedGoogle Scholar
  24. Dobson, C.M., Geraldes, C.F.G.C., Ratcliffe, G., and Williams, R.J. P., 1978. Nuclear-magnetic-resonance studies of 5’-ribonucleotide and 5′-deoxyribonucleotide conformation in solution using the lanthanide probe method, Eur. J. Biochem. 88:259–266.CrossRefPubMedGoogle Scholar
  25. Draper, D.E., 1985. On the coordination properties of Eu3+ bound to tRNA, Biophys. Chem. 21:91–101.CrossRefPubMedGoogle Scholar
  26. Eads, C.D., Mulqueen, P., Horrocks, W. D., and Villafranca, J. J., 1984. Characterization of ATP complexes with lanthanide(III) ions, J. Biol. Chem. 259:9379–9383.PubMedGoogle Scholar
  27. Ellis, K. J., and Morrison, J. F., 1974. The interaction of europium(III) ion with nucleotides, Biochim. Biophys. Acta 362:201–208.CrossRefPubMedGoogle Scholar
  28. Fazakerley, G. V., and Reid, D.G., 1979. Determination of the interaction of ADP and dADP with copper(II), manganese(II) and lanthanide(III) ions by nuclear-magnetic-resonance spectroscopy, Eur. J. Biochem. 93:535–563.CrossRefPubMedGoogle Scholar
  29. Fazakerley, G. V., Russell, J.C., and Wolfe, M.A., 1977a. Determination of the syn-anti equilibrium of some purine 3’:5’-nucleotides by nuclear-magnetic relaxation perturbation in the presence of a lanthanide-ion probe, Eur. J. Biochem. 76:601–605.CrossRefPubMedGoogle Scholar
  30. Fazakerley, G. V., Linder, P. W., and Reid, D.G., 1977b. Determination of the solution conformation of dephospho coenzyme A by nuclear-magnetic-resonance spectroscopy with lanthanide probes. A method for analysis when more than one complex species is present, Eur. J. Biochem. 81:507–514.CrossRefPubMedGoogle Scholar
  31. Formoso, C., 1973. Fluorescence of nucleic acid-terbium(III) complexes, Biochem. Biophys. Res. Commun. 53:1084–1087.CrossRefPubMedGoogle Scholar
  32. Galea, J., Beccaria, R., Ferroni, G., and Belaich, J. P., 1978. Thermodynamic studies on formation of europium(III)-adenine nucleotide complexes, Electrochim. Acta 23:647–652.CrossRefGoogle Scholar
  33. Geraldes, C. F. G. C., 1979. Nuclear magnetic resonance study of the solution conformation of adenine mononucleotides using the lanthanide probe method, J. Magn. Reson. 36: 89–98.Google Scholar
  34. Geraldes, C. F. G. C., and Williams, R. J. P., 1978. Nucleotide torsional flexibility in solution and the use of lanthanides as nuclear-magnetic-resonance conformational probes. The case of adenosine-5′-monophosphate, Eur. J. Biochem. 85:463–470.CrossRefPubMedGoogle Scholar
  35. Gersanovski, D., Colson, P., Houssier, C., and Fredericq, E., 1985. Terbium3+ as a probe of nucleic acids structure. Does it alter the DNA conformation in solution? Biochim. Biophys. Acta 824:313–323.CrossRefPubMedGoogle Scholar
  36. Gross, D.S., and Simpkins, H., 1981. Evidence for two-site binding in the terbium(III)-nucleic acid interaction, J. Biol. Chem. 256:9593–9598.PubMedGoogle Scholar
  37. Gross, D. S., Rice, S. W., and Simpkins, H., 1981. Influence of inorganic cations and histone proteins on the terbium(III)-nucleic acid interaction, Biochim. Biophys. Acta 656:167–176.CrossRefPubMedGoogle Scholar
  38. Gross, D. S., Simpkins, H., Bubienko, E., and Borer, P. N., 1982. Proton magnetic resonance analysis of terbium ion-nucleic acid complexes: further evidence for two-site binding to polynucleotides, Arch. Biochem. Biophys. 219:401–410.CrossRefPubMedGoogle Scholar
  39. Gutman, M., and Levy, M.A., 1983. Fluorescence decay time measurements of Eu3+ -ATP-enzyme complexes. Replacement of the metal hydration water by active site ligands, J. Biol. Chem. 258:12132–12134.PubMedGoogle Scholar
  40. Haertlé, T., Kretschmer, E., and Augustyniak, J., 1980. Tb3+ as a marker in studies of tRNA interactions, in Biological Implications of Protein-Nucleic Acid Interactions (J. Augustyniak, ed.), A. Mickiewicz University Press, Poznan, Poland, pp. 629–633.Google Scholar
  41. Haertlé, T., Augustyniak, J., and Guschlbauer, W., 1981. Is Tb3+ fluorescence enhancement only due to binding to single strand polynucleotides? Nucleic Acids Res. 9:6191–6197.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Hanna, D.A., Yeh, C., Shaw, J., and Everett, G. W., 1983. Gadolinium(III) and man-ganese(II) binding by a polyether ionophore. Influence of cation charge and solvent polarity on the binding sites of lasalocid A (X-537A), Biochemistry 22:5619–5626.CrossRefGoogle Scholar
  43. Holbrook, S.R., Sussman, J.L., Warrant, R.W., Church, G.M., and Kim, S.H., 1977. RNA-ligand interactions: (1) magnesium binding sites in yeast tRNAPhe, Nucleic Acids Res. 4:2811–2820.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Horrocks, W.DeW., 1982. Lanthanide ion probes of biomolecular structure, in Advances in Inorganic Biochemistry (G. L. Eichhorn and L. G. Marzilli, eds.), Vol. 4, Elsevier, New York, pp. 201–261.Google Scholar
  45. Horrocks, D.DeW., and Hove, E.G., 1978. Water soluble lanthanide porphyrins: shift reagents for aqueous solutions, J. Am. Chem. Soc. 100:4386–4392.CrossRefGoogle Scholar
  46. Horrocks, W.DeW., and Wong, C.P., 1976. Lanthanide porphyrin complexes. Evaluation of nuclear magnetic resonance dipolar probe and shift reagent capabilities, J. Am. Chem. Soc. 98:7157–7162.CrossRefPubMedGoogle Scholar
  47. Horrocks, W. DeW., Venteicher, R. F., Spilburg, C. A., and Vallée, B. L., 1975. Lanthanide porphyrin probes of heme proteins. Insertion of ytterbium (III) mesoporphyrin IX into apomyoglobin, Biochem. Biophys. Res. Commun. 64:317–322.CrossRefPubMedGoogle Scholar
  48. Houssier, C., Maquet, M.N., and Fredericq, E., 1983. Denaturation level of DNA-Pt complexes evidenced by Tb3+ fluorescence enhancement and electric dichroism, Biochim. Biophys. Acta 739:312–316.CrossRefPubMedGoogle Scholar
  49. Inagaki, F., Tasumi, M., and Miyazawa, T., 1978. Structures and populations of conformers of nucleoside monophosphates in aqueous solution. I. General methods of conformational search with lanthanide-ion probes and spin-coupling constants and application to uridine-5’-monophosphate, Biopolymers 17:267–289.CrossRefGoogle Scholar
  50. Izatt, R. M., Christensen, J. J., and Rytting, J.H., 1971. Sites and thermodynamic quantities associated with proton and metal ion interactions with ribonucleic acid, deoxyribonucleic acid and their constituent bases, nucleosides and nucleotides, Chem. Rev. 71: 439–481.CrossRefPubMedGoogle Scholar
  51. Izumi, K., 1980. Carbon-13 NMR spectra of sodium D-gluco- and D-galactopyranuronates in the presence of lanthanide ions, Agric. Biol. Chem. 44:1623–1631.CrossRefGoogle Scholar
  52. Jack, A., Ladner, J.E., Rhodes, D., Brown, R. S., and Klug, A., 1977. A crystallographic study of metal-binding to yeast phenylalanine transfer RNA, J. Mol. Biol. 111:315–328.CrossRefPubMedGoogle Scholar
  53. Jones, C.R., and Kearns, D.R., 1974. Investigation of the structure of yeast tRNAPhe by nuclear magnetic resonance: paramagnetic rare earth ion probes of structure, Proc. Natl. Acad. Sci. USA 71:4237–4240.CrossRefPubMedCentralPubMedGoogle Scholar
  54. Kayne, M. S., and Cohn, M., 1972. Cation requirements of isoleucyl-RNA synthetase from Escherichia coli, Biochem. Biophys. Res. Commun. 46:1285–1291.CrossRefGoogle Scholar
  55. Kayne, M.S., and Cohn, M., 1974. Enhancement of Tb(III) and Eu(III) fluorescence in complexes with Escherichia coli tRNA, Biochemistry 13:4159–4165.CrossRefPubMedGoogle Scholar
  56. Kearns, D.R., and Bolton, P. H., 1978. Proton probes of the tertiary structure of transfer RNA molecules, in Biomolecular Structure and Function (B. Pullman, ed.), Academic Press, New York, pp. 493–516.CrossRefGoogle Scholar
  57. Kieboom, A.P.G., Sinnema, A., Van der Toorn, J.M., and Van Bekkum, H., 1977.,3C NMR study of the complex formation of sorbitol (glucitol) with multivalent cations in aqueous solution using lanthanide(III) nitrates as shift reagents, Reel. Trav. Chim. Pays-Bas 96:35–37.CrossRefGoogle Scholar
  58. Lavallee, D. K., and Zeltmann, A. H., 1974. Conformation of cyclic /3-adenosine 3’,5’-phosphate in solution using the lanthanide shift technique. J. Am. Chem. Soc. 96: 5552–5556.CrossRefPubMedGoogle Scholar
  59. Lee, C. Y., and Raszka, M. J., 1975. Determination of solution structure of diphosphopyridine coenzymes with paramagnetic shift and broadening reagents, J. Magn. Reson. 17: 151–160.Google Scholar
  60. Martin, R. B., 1983. Structural chemistry of calcium: lanthanides as probes, in Calcium in Biology (T.G. Spiro, ed.), Wiley, New York, pp. 237–270.Google Scholar
  61. Morley, P. J., Martin, R. B., and Boatman, S., 1981. Characterization of excitation spectra for Tb3+ luminescence from nucleic acids: calcium binding environs in icosahedral viruses, Biochem. Biophys. Res. Commun. 101:1123–1130.CrossRefPubMedGoogle Scholar
  62. Morrison, J. F., and Cleland, W. W., 1983. Lanthanide-adenosine 5’-triphosphate complexes: determination of their dissociation constants and mechanism of action as inhibitors of yeast hexokinase, Biochemistry 22:5507–5513.CrossRefGoogle Scholar
  63. Pavlick, D., and Formoso, C., 1978. Lanthanide fluorescence studies of transfer (MATH) conformation, Biochemistry 17:1537–1540.CrossRefPubMedGoogle Scholar
  64. Pfeiffer, D.R., Reed, P. W., and Lardy, H.A., 1974. Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187 and its metal ion complexes, Biochemistry 13:4007–4014.CrossRefPubMedGoogle Scholar
  65. Richardson, F. S., and Gupta, A.D., 1981. Spectroscopic studies on the interaction of the antibiotic lasalocid A (X537A) with lanthanide(III) ions in methanol, J. Am. Chem. Soc. 103:5716–5725.CrossRefGoogle Scholar
  66. Ringer, D. P., Burchett, S., and Kizer, D. E., 1978. Use of Tb(III) fluorescence enhancement to selectively monitor DNA and RNA guanine residues and their alteration by chemical modification, Biochemistry 17:4818–4824.CrossRefPubMedGoogle Scholar
  67. Ringer, D. P., Howell, B. A., and Kizer, D. E., 1980. Use of terbium fluorescence enhancement as a new probe for assessing the single-strand content of DNA, Anal. Biochem. 103:337–342.CrossRefPubMedGoogle Scholar
  68. Ringer, D. P., Etheredge, J. L., and Kizer, D. E., 1985. The influence of DNA sequence on terbium(III) fluorescence enhancement by DNA, J. Inorg. Biochem. 24:137–145.CrossRefPubMedGoogle Scholar
  69. Robertus, J.D., Ladner, J.E., Finch, J. T., Rhodes, D., Brown, R.S., Clark, B.F.C., and Klug, A., 1974. Structure of yeast phenylalanine tRNA at 3Ä resolution, Nature 250: 546–551.CrossRefPubMedGoogle Scholar
  70. Robins, M. J., MacCoss, M., and Wilson, J.S., 1977. Nucleic acid related compounds 27. “Virtual coupling” of the anomeric proton of cyclic 2’-deoxynucleoside 3′,5′-mono-phosphates. Reassessment of conformation using praseodymium shifts and assignment of H-2′ 2″ signals by biomimetic deuteration at ∈ 2′ J. Am. Chem. Soc. 99:4660–4666.CrossRefPubMedGoogle Scholar
  71. Rordorf, B. F., and Kearns, D. R., 1976. Effect of europium(III) on the thermal denaturation and cleavage of transfer ribonucleic acids, Biopolymers 15:1491–1504.CrossRefPubMedGoogle Scholar
  72. Sarna, T., Hyde, J. S., and Swartz, H. M., 1976. Ion-exchange in melanin: an electron spin resonance study with lanthanide probes, Science 192:1132–134.CrossRefPubMedGoogle Scholar
  73. Shastri, B. P., Sankaram, M. B., and Easwaran, K. R., 1987. Carboxylic ionophore (lasalocid A and A23187)-mediated lanthanide ion transport across phospholipid vesicles, Biochemistry 26:4925–4930.CrossRefPubMedGoogle Scholar
  74. Shimizu, T., Mims, W. B., Peisach, J., and Davis, J. L., 1979. Analysis of the electron spin echo decay envelope for Nd3+: ATP complexes, J. Chem. Phys. 76:2249–2254.CrossRefGoogle Scholar
  75. Shimizu, T., Mims, W. B., Davis, J. L., and Peisach, J., 1983. Studies of the coordination of rare earths and transition metal nucleotide complexes by an electron spin echo method, Biochim. Biophys. Acta 757:29–39.CrossRefGoogle Scholar
  76. Simpkins, H., and Pearlman, L. F., 1984. The binding of actinomycin D and adriamycin to supercoiled DNA, single-stranded DNA and polynucleotides, Biochim. Biophys. Acta 783:293–300.CrossRefPubMedGoogle Scholar
  77. Simpkins, H., Pearlman, L. F., and Thompson, L. M., 1984. Effects of adriamycin on supercoiled DNA and calf thymus nucleosomes studied with fluorescent probes, Cancer Res. 44:613–618.PubMedGoogle Scholar
  78. Smith, R. V., Erhardt, P.W., Rusterholz, D.B., and Barfknecht, C.F., 1976. NMR study of amphetamines using europium shift reagents, J. Pharm. Sci. 65:412–417.CrossRefPubMedGoogle Scholar
  79. Srivastava, T. S., 1980. Gadolinium(III) myoglobin: interaction of gadolinium(III) mesoporphyrin IX with apomyoglobin, Curr. Sci. 49:429–430.Google Scholar
  80. Stokke, T., and Steen, H. B., 1985. Neither adriamycin nor actinomycin D displaces Tb3+ from DNA, Biochim. Biophys. Acta 825:416–418.CrossRefPubMedGoogle Scholar
  81. Stout, C.D., Mizuno, H., Rao, S.T., Swaminathan, P., Rubin, J., Brenan, T., and Sunderalingham, M., 1978. Crystal and molecular structure of yeast phenylalanine transfer RNA. Structure determination, difference Fourier refinement, molecular conformation, metal and solvent binding, Acta Crystallogr. B34:1529–1544.CrossRefGoogle Scholar
  82. Suddarth, F. L., Quigley, G.J., McPherson, A., Sneden, D., Kim, J. J., Kim, S.H., and Rich, A., 1974. Three-dimensional structure of yeast phenylalanine transfer RNA at 3.0Å resolution, Nature 248:20–24.CrossRefGoogle Scholar
  83. Tanswell, P., Thornton, J.M., Korda, A.V., and Williams, R.J.P., 1975. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes, Eur. J. Biochem. 57:135–145.CrossRefPubMedGoogle Scholar
  84. Thompson, L. M., Arquilla, M., and Simpkins, H., 1982. The interaction of platinum complexes with nucleosomes investigated with fluorescent probes, Biochim. Biophys. Acta 698:173–182.CrossRefPubMedGoogle Scholar
  85. Topal, M. D., and Fresco, J. R., 1980. Fluorescence of terbium ion-nucleic acid complexes: a sensitive specific probe for unpaved residues in nucleic acids, Biochemistry 19:5531–5537.CrossRefPubMedGoogle Scholar
  86. Velapoldi, R. A., and Menis, O., 1971. Formation and stabilities of free bilirubin complexes with transition and rare-earth elements, Clin. Chem. 17:1165–1170.PubMedGoogle Scholar
  87. Wolfson, J. M., and Kearns, D. R., 1975. Europium as a fluorescent probe of transfer RNA, Biochemistry 14:1436–1444.CrossRefPubMedGoogle Scholar
  88. Yokoyama, S., Inagaki, F., and Miyazawa, T., 1981. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures, Biochemistry 20:2981–2988.CrossRefPubMedGoogle Scholar
  89. Yonuschot, G., and Mushrush, G. W., 1975. Terbium as a fluorescent probe for DNA and chromatin, Biochemistry 14:1677–1678.CrossRefPubMedGoogle Scholar
  90. Yonuschot, G., Robey, G., Mushrush, G. W., Helman, D., and Van de Woude, G., 1978. Measurement of binding of terbium to DNA, Bioinorg. Chem. 8:397–404.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. H. Evans
    • 1
  1. 1.The Ferguson LaboratoryUniversity of PittsburghPittsburghUSA

Personalised recommendations