Advertisement

The Interaction of Lanthanides with Amino Acids and Proteins

  • C. H. Evans
Part of the Biochemistry of the Elements book series (BOTE, volume 8)

Abstract

Because Ca2+ is such a recalcitrant ion, Ln3+ ions have found extensive use as informative substituents with which to investigate various structural and functional aspects of the Ca2+-binding sites on proteins. The chemical principles upon which this strategy rests are discussed in Chapter 2. In some cases, lanthanides have served to report on the binding sites of other metal ions, such as Fe3+ in transferrin (Section 4.8) and ferritin (Section 4.8), Mn2+ in pyruvate kinase (Section 4.24) and gluta-mine synthetase (Section 4.25), or Mg2+ in pyruvate kinase (Section 4.24) and alkaline phosphatase (Section 4.25). Lanthanides have also provided useful information about proteins, such as lysozyme (Section 4.7), which are not thought to interact specifically with Ca2+, or any other metal ion, under physiological conditions. In addition, chemical modification of a protein can be used to introduce specific, strong binding sites for Ln3+ ions (e.g., Marinetti et al., 1976; Leung and Meares, 1977; Bradbury et al., 1978; Walter et al., 1981).

Keywords

Hydration Number Magnetic Circular Dichroism Proton Relaxation Calcium Binding Site Staphylococcal Nuclease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, F., Dasnall, D. W., and Birnbaum, E. R., 1975a. The location of the lanthanide ion binding site on bovine trypsin. Biochem. Biophys. Res. Commun. 65:241–247.PubMedGoogle Scholar
  2. Abbott, F., Gomez, J. E., Birnbaum, E. R., and Darnall, D. W., 1975b. The location of the calcium ion binding site in bovine alpha-trypsin and beta-trypsin using lanthanide ion probes, Biochemistry 14:4935–4943.PubMedGoogle Scholar
  3. Abramson, J. J., and Shamoo, A. E., 1980. The effect of divalent and trivalent cation binding on the transport of calcium- and magnesium-dependent adenosine triphosphatase, Ann. N.Y. Acad. Sci. 358:322–323.PubMedGoogle Scholar
  4. Aebi, U., Smith, P.R., Isenberg, G., and Pollard, C.G., 1980. Structure of crystalline actin sheets, Nature 288:296–298.PubMedGoogle Scholar
  5. Agresti, D. G., Lenkinski, R. E., and Glickson, J.D., 1977. Lanthanide induced N.M.R. perturbations of HEW lysozyme: evidence for non-axial symmetry, Biochem. Biophys. Res. Commun. 76:711–719.PubMedGoogle Scholar
  6. Amphlett, G. W., Byrne, R., and Castellino, F. J., 1978. The binding of metal ions to bovine factor IX, J. Biol. Chem. 253:6774–6779.PubMedGoogle Scholar
  7. Aogaichi, T., Evans, J., Gabriel, J., and Plaut, G.W., 1980. The effects of calcium and lanthanide ions on the activity of bovine heart nicotinamide adenine dinucleotide-spe-cific isocitrate dehydrogenase, Arch. Biochem. Biophys. 204:350–356.PubMedGoogle Scholar
  8. Arnone, A., Bier, C.J., Cotton, F. A., Day, V. W., Hazen, E.E., Richardson, D.C., Richardson, J. S., and Yonath, A., 1971. A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus. I. Experimental procedures and chain tracing, J. Biol. Chem. 246:2302–2316.PubMedGoogle Scholar
  9. Asso, M., Granier, C., Van Rietschoten, J., and Benlian, D., 1985. Calcium and praseodymium complexes in solution. H N.M.R. conformational study of the model tetra- peptide acetyl-aspartyl-valyl-aspartyl-alanine, Int. J. Pept. Protein Res. 26:10–20.PubMedGoogle Scholar
  10. Avigliano, L., Aducci, P., Sirianni, P., and Finazzi-Agro, A., 1984. A fluorometric study of the lanthanides binding to conconavalin A, Int. J. Biochem. 16:1409–1413.PubMedGoogle Scholar
  11. Banyard, S., Stammers, D.K., and Harrison, P.M., 1978. Electron density map of apoferritin at 2.8 À resolution, Nature 271:282–284.PubMedGoogle Scholar
  12. Babu, Y.S., Sack, J.S., Greenhough, T.J., Bugg, C.E., Means, A.R., and Cook, W.J., 1985. Three-dimensional structure of calmodulin, Nature 315:37–40.PubMedGoogle Scholar
  13. Barber, B. H., Fuhr, B., and Carver, J. P., 1975. A magnetic resonance study of conconavalin A. Identification of a lanthanide binding site, Biochemistry 14:4075–4082.Google Scholar
  14. Barden, J. A., and Dos Remedios, C.G., 1978. Evidence for the non-filamentous aggregation of actin induced by lanthanide ions, Biochim. Biophys. Acta 537:417–427.PubMedGoogle Scholar
  15. Barden, J. A., and Dos Remedios, C.G., 1979. Binding stoichiometry of gadolinium to actin: its effect on the actin-bound divalent cation, Biochem. Biophys. Res. Commun. 86: 529–535.PubMedGoogle Scholar
  16. Barden, J. A., and Dos Remedios, C.G., 1980. Crystalline actin tubes. I. Is the conformation of the lanthanide-induced actin tube monomer more like F-actin than G-actin? Biochim. Biophys. Acta 629:163–173.Google Scholar
  17. Barden, J.A., Cooke, R., Wright, P.E., and Dos Remedios, C.G., 1980. Proton nuclear magnetic resonance and electron paramagnetic resonance studies on skeletal muscleactin indicate that the metal and nucleotide binding sites are separate, Biochemistry 19: 5912–5916.PubMedGoogle Scholar
  18. Becker, J. W., Reeke, G. N., Wang, J. L., Cunningham, B. A., and Edelman, G. M., 1975. The covalent and three-dimensional structure of conconavalin A. III. Structure of the monomer and its interactions with metal and saccharides, J. Biol. Chem. 250:1513–1524.PubMedGoogle Scholar
  19. Best, L. C., Bone, E. A., Jones, P. B., and Russell, R. G., 1980. Lanthanum stimulates the accumulation of cyclic AMP and inhibits secretion and thromboxane B2 formation in human platelets, Biochim. Biophys. Acta 632:336–342.PubMedGoogle Scholar
  20. Birnbaum, E.R., Gomez, J. E., and Darnall, D.W., 1970. Rare earth metal ions as probes of electrostatic binding sites in proteins, J. Am. Chem. Soc. 92:5287–5288.PubMedGoogle Scholar
  21. Bloom, J.W., and Mann, K. B., 1978. Metal ion induced conformational transitions of prothrombin and thrombin fragment 1, Biochemistry 17:4430–4438.PubMedGoogle Scholar
  22. Blum, H., Leigh, J.S., and Ohnishi, T., 1980. Effect of dysprosium on the spin-latticerelaxation time of cytochrome c and cytochrome a, Biochim. Biophys. Acta 626:31–40.PubMedGoogle Scholar
  23. Blum, H., Cusanovich, M. A., Sweeney, W. V., and Ohnishi, T., 1981. Magnetic interactions between dysprosium complexes and two soluble iron-sulfur proteins, J. Biol. Chem. 256:2199–2206.PubMedGoogle Scholar
  24. Bode, W., and Schwager, P., 1975. The refined crystal structure of bovine ß-trypsin at 1.8 Å resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0,J. Mol. Biol. 98:693–717.PubMedGoogle Scholar
  25. Bonucci, E., Silvestrini, G., and DiGrezia, R., 1988. The ultrastructure of the organic phase associated with the inorganic substance in calcified tissue, Clin. Orthop. Rel. Res. 233:243–261.Google Scholar
  26. Borowski, M., Furie, B. C., Goldsmith, G. H., and Furie, B., 1985. Metal and phospholipid binding properties of partially carboxylated human prothrombin variants, J. Biol. Chem. 260:9258–9264.PubMedGoogle Scholar
  27. Bradbury, J. H., Brown, L. R., Crompton, M. W., and Warren, B., 1974. Determination of the sequence of peptides by PMR spectroscopy, Anal. Biochem. 62:310–316.PubMedGoogle Scholar
  28. Bradbury, J.H., Howell, J.R., Johnson, R. N., and Warren, B., 1978. Introduction of a strong binding site for lanthanides at the N-terminus of peptides and ribonuclease A, Eur. J. Biochem. 84:503–511.PubMedGoogle Scholar
  29. Bratcher, S.C., and Kronman, M.J., 1984. Metal ion binding to the N and A conformers of bovine α-lactalbumin, J. Biol. Chem. 259:10875–10886.PubMedGoogle Scholar
  30. Bresnahan, S.J., Baugh, L. E., and Borowitz, J.L., 1980. Mechanisms of La3+ -induced adrenal catecholamine release, Res. Commun. Chem. Pathol. Pharmacol. 28:229–244.PubMedGoogle Scholar
  31. Brewer, J.M., 1985. Specificity and mechanism of action of metal ions in yeast enolase, FEBS Lett. 182:8–14.Google Scholar
  32. Brewer, J.M., Carreira, L. A., Irwin, R. M., and Elliot, J. I., 1981. Binding of terbium(III) to yeast enolase, J. Inorg. Biochem. 14:33–44.PubMedGoogle Scholar
  33. Brittain, H. G., and Richardson, F. S., 1977. Circularly polarized emission studies on Tb3+ and Eu3+ complexes with potentially terdentate amino acids in aqueous solution, Bioinorg. Chem. 7:233–243.PubMedGoogle Scholar
  34. Brittain, H. G., Richardson, F. S., Martin, R.B., Burtnik, L.D., and Kay, CM., 1976. Circularly polarized emission of terbium(IH) substituted bovine cardiac troponin-C., Biochem. Biophys. Res. Commun. 68:1013–1019.PubMedGoogle Scholar
  35. Buccigross, J.M., and Nelson, D.J., 1986. EPR studies show that all lanthanides do not have the same order of binding to calmodulin, Biochem. Biophys. Res. Commun. 138: 1243–1249.PubMedGoogle Scholar
  36. Buck, F. F., Vithayathil, A., Bier, M., and Nord, F. F., 1962. On the mechanism of enzyme action. LXXIII. Studies on trypsins from beef, sheep and pig pancreas, Arch. Biochem. Biophys. 97:417–424.PubMedGoogle Scholar
  37. Burtnick, L.D., 1982. Tb3+ as a luminescent probe of actin structure: effects of polymerization, KI and the binding of deoxyribonuclease I, Arch. Biochem. Biophys. 216:81–87.PubMedGoogle Scholar
  38. Burton, D.R., Forsen, S., Karlstrom, G., Dwek, R.A., McLaughlin, A.C., and Wain-Hobson, S., 1977a. The determination of molecular-motion parameters from proton-relaxation-enhancement measurements in a number of Gd(III)-antibody-fragment complexes. A comparative study, Eur. J. Biochem. 75:445–453.PubMedGoogle Scholar
  39. Burton, D.R., Dwek, R. A., Forsen, S., and Karlstrom, G., 1977b. A novel approach to water proton relaxation in paramagnetic ion-macromolecule complexes, Biochemistry 16:250–258.PubMedGoogle Scholar
  40. Campbell, I.D., Dobson, C.M., Williams, R.J. P., and Xavier, A. V., 1973. Determination of the structure of proteins in solution. Lysozyme, Ann. N.Y. Acad. Sci. 222:163–174.PubMedGoogle Scholar
  41. Campbell, I.D., Dobson, C.M., and Williams, R.J. P., 1975. Studies of exchangeable hydrogens in lysozyme by means of Fourier transform proton magnetic resonance, Proc. Roy. Soc. B 189:484–502.Google Scholar
  42. Canada, R.G., 1981. Terbium fluorescence studies of the metal-angiotensin II complex, Biochem. Biophys. Res. Commun. 99:913–919.PubMedGoogle Scholar
  43. Castillo, F.J., Penel, C., and Greppin, H., 1984. Peroxidase release induced by ozone in Sedum album leaves. Involvement of Ca2+, Plant Physiol. 74:846–851.PubMedCentralPubMedGoogle Scholar
  44. Cave, A., Daures, M. F., Parello, J., Saint-Yves, A., and Sempere, R., 1979. NMR studies of primary and secondary sites of parvalbumins using the two paramagnetic probes Gd(III) and Mn(II), Biochimie 61:755–765.PubMedGoogle Scholar
  45. Chantier, P. D., 1983. Lanthanides do not function as calcium analogues in scallop myosin, J. Biol. Chem. 258:4702–4705.Google Scholar
  46. Chasteen, N.D., and Theil, E.C., 1982. Iron binding by horse spleen apoferritin. A van-adyl(IV) EPR spin probe study, J. Biol. Chem. 257:7672–7677.PubMedGoogle Scholar
  47. Chevallier, J., and Butow, R. A., 1971. Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle, Biochemistry 10:2733–2737.PubMedGoogle Scholar
  48. Chiba, K., Ohyashiki, T., and Mohri, T., 1984. Stoichiometry and location of terbium and calcium bindings to porcine intestinal calcium-binding protein, J. Biochem. 95:1767–1774.PubMedGoogle Scholar
  49. Choosri, T., 1981. The study of α-amylases using lanthanide(III) ions as substitutional probes, Ph.D. thesis, Pennsylvania State University.Google Scholar
  50. Clayton, R. A., 1959. In vitro inhibition of selected enzymes by rare earth chlorides, Arch. Biochem. Biophys. 85:559–560.PubMedGoogle Scholar
  51. Colman, P.M., Weaver, L.H., and Matthews, B.W., 1972a. Rare earths as isomorphous calcium replacements for protein crystallography, Biochem. Biophys. Res. Commun. 46:1999–2005.PubMedGoogle Scholar
  52. Colman, P. M., Jansonius, J. N., and Matthews, B. W., 1972b. The structure of thermolysin: an electron density map at 2.3 Å resolution, J. Mol. Biol. 70:701–724.PubMedGoogle Scholar
  53. Colman, P.M., Weaver, L.H., and Matthews, B.W., 1974. Binding of lanthanide ions to thermolysin, Biochemistry 13:1719–1725.Google Scholar
  54. Cookson, D.J., Levine, B.A., Williams, R.J. P., Jontell, M., Linde, A., and deBarnard, B., 1980. Cation binding by the rat incisor dentine phosphoprotein, in Calcium-Binding Proteins: Structure and Function, (F. L. Siegel, E. Carafoli, R.H. Kretsinger, D.H. MacLennan, and R. H. Wasserman, eds), Elsevier/North-Holland, Amsterdam, pp. 483–484.Google Scholar
  55. Corson, D. C., Lee, L., McQuaid, G. A., and Sykes, B. D., 1983a. An optical stopped-flow and 1H and 113Cd nuclear magnetic resonance study of the kinetics and stoichiometry of the interaction of the lanthanide Yb3+ with carp parvalbumin, Can. J. Biochem. Cell. Biol. 61:860–870.PubMedGoogle Scholar
  56. Corson, D. C., Williams, T. C., and Sykes, B. D., 1983b. Calcium binding proteins: optical stopped-flow and proton nuclear magnetic resonance studies of the binding of the lanthanide series of metal ions to parvalbumin, Biochemistry 22 :5882–5889.PubMedGoogle Scholar
  57. Corson, D.C., Williams, T.C., Kay, L. E., and Sykes, B.D., 1986. ‘H NMR spectroscopic studies of calcium-binding proteins. I. Stepwise proteolysis of the C-terminal a-helix of a helix-loop-helix metal-binding domain, Biochemistry 25:1817–1826.PubMedGoogle Scholar
  58. Cottam, G.L., and Ward, R. L., 1975. Fourier transform phosphorus magnetic resonance study of the interaction of P-enolpyruvate with the muscle pyruvate kinase-gadolinium complex, Biochem. Biophys. Res. Commun. 64:797–802.PubMedGoogle Scholar
  59. Cottam, G. L., Valentine, K.M., Thompson, B.C., and Sherry, A.D., 1974. Magnetic resonance studies of the formation of the ternary phosphoenolpyruvate-gadolinium-muscle pyruvate kinase complex, Biochemistry 13:3532–3537.PubMedGoogle Scholar
  60. Cuatrecasas, P., Fuchs, S., and Anfinsen, C.B., 1967. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus, J. Biol. Chem. 242:1541–1547.Google Scholar
  61. Curmi, P.M., Barden, J. A., and Dos Remedios, C.G., 1982. Conformational studies of G-actin containing bound lanthanide, Eur. J. Biochem. 122:239–244.PubMedGoogle Scholar
  62. Dahlquist, F. W., Long, J. W., and Bigbee, W. L., 1976. Role of calcium ions in the thermal stability of thermolysin, Biochemistry 15:1103–1111.PubMedGoogle Scholar
  63. Daman, M. E., and Dill, K., 1983. 13C-n.m.r.-spectral study of the binding of Gd3+ to glycophorin, Carbohydr. Res. 111:205–214.PubMedGoogle Scholar
  64. Dano, K., and Reich, E., 1979. Plasminogen activator from cells transformed by an oncogenic virus. Inhibitors of the activation reaction, Biochim. Biophys. Acta 566:138–151.PubMedGoogle Scholar
  65. Darnall, D. W., and Birnbaum, E. R., 1970. Rare earth metal ions as probes of calcium ion binding sites in proteins, J. Biol. Chem. 245:6484–6488.PubMedGoogle Scholar
  66. Darnall, D.W., and Birnbaum, E.R., 1973. Lanthanide ions activate «-amylase, Biochemistry 12:3489–3491.PubMedGoogle Scholar
  67. Darnall, D.W., Birnbaum, E.R., Sherry, A.D., and Gomez, J.E., 1973. Lanthanide ions as calcium ion substitutes in trypsin and trypsinogen, Proceedings of the 10th Rare Earth Research Conference, Vol. 1, pp. 117–126.Google Scholar
  68. Davril, M., Jung, M.L., Duportail, G., Lohez, M., Han, K.K., and Bieth, J.G., 1984. Arginine modification in elastase. Effect on catalytic activity and conformation of the calcium-binding site, J. Biol. Chem. 259:3851–3857.PubMedGoogle Scholar
  69. Dedman, J. R., Potter, J. D., Jackson, R. L., Johnson, J. D., and Means, A. R., 1977. Phys-icochemical properties of rat testis Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase. Relationship of Ca2+-binding, conformational changes and phosphodiesterase activity, J. Biol. Chem. 252:8415–8422.PubMedGoogle Scholar
  70. DeJersey, J., and Martin, R. B., 1980. Lanthanide probes in biological systems: the calcium binding site of pancreatic elastase as studied by terbium luminescence, Biochemistry 19:1127–1132.Google Scholar
  71. DeJersey, J., Lahue, R.S., and Martin, R. B., 1980. Terbium luminescence as a probe of the calcium binding site of trypsin and alpha-chymotrypsin, Arch. Biochem. Biophys. 205:536–542.Google Scholar
  72. Desmuelle, P., and Fabre, C., 1955. Sur la séquence N-terminale du trypsinogène et son ablation pendant l’activation de ce zymogène, Biochim. Biophys. Acta 18:49–57.Google Scholar
  73. Dill, K., and Allerhand, A., 1977. Effect of chemical modifications at tryptophan-108 on binding of lanthanide ions to hen egg-white lysozyme. Application of natural-abundance carbon-13 nuclear magnetic resonance spectroscopy, Biochemistry 16:5711–5716.PubMedGoogle Scholar
  74. Dill, K., Daman, M.E., Batstone-Cunningham, R. L., Lacombe, J.M., and Pavia, A.A., 1983. 13C-n.m.r.-spectral study of the mode of binding of Gd3+ to various glycopeptides, Carbohydr. Res. 123:123–135.PubMedGoogle Scholar
  75. Dimicoli, J.L., and Bieth, J., 1977. Location of the calcium ion binding site in porcine pancreatic elastase using a lanthanide ion probe, Biochemistry 16:5532–5537.PubMedGoogle Scholar
  76. Dockter, M. E., 1982. Diffusion-enhanced energy transfer characterization of heme locations in yeast cytochromes, Fed. Proc. 41:749.Google Scholar
  77. Donato, H., and Martin, R. B., 1974. Conformations of carp muscle calcium binding paralbumin, Biochemistry 13:4575–4579.PubMedGoogle Scholar
  78. Dos Remedios, C.G., 1977. Ionic radius selectivity of skeletal muscle membranes, Nature 170:750–751.Google Scholar
  79. Dos Remedios, C.G., and Barden, J. A., 1977. Effects of Gd(III) on G-actin: inhibition of polymerization of G-actin and activation of myosin ATPase activity by Gd-G-actin, Biochem. Biophys. Res. Commun. 77:1339–1346.PubMedGoogle Scholar
  80. Dos Remedios, C.G., and Dickens, M.J., 1978. Actin microcrystals and tubes formed in the presence of gadolinium ions, Nature 276:731–733.PubMedGoogle Scholar
  81. Dos Remedios, C.G., Barden, J. A., and Valois, A.A., 1980. Crystalline actin tubes. II. The effect of various lanthanide ions on actin tube formation, Biochim. Biophys. Acta 624:174–186.PubMedGoogle Scholar
  82. Dower, S. K., Dwek, R. A., McLaughlin, A. C., Mole, L. E., Press, E. M., and Sunderland, C.A., 1975. The binding of lanthanides to non-immune rabbit immunoglobulin G and its fragments, Biochem. J. 149:73–82.PubMedCentralPubMedGoogle Scholar
  83. Drachev, A. L., Drachev, L.A., Kaulen, A.D., and Khitrina, L. V., 1984. The action of lanthanum ions and formaldehyde on the proton-pumping function of bacteriorhodopsin, Eur. J. Biochem. 138:349–356.PubMedGoogle Scholar
  84. Drouven, B.J., and Evans, C.H., 1986. Collagen fibrillogenesis in the presence of lanthanides, J. Biol. Chem. 261:11792–11797.PubMedGoogle Scholar
  85. Duportail, G., Lefevre, J. F., Lestienne, P., Dimicoli, J. L., and Bieth, J. G., 1980. Binding of terbium to porcine pancreatic elastase. Ligand-induced changes in the stability, the maximum luminescence intensity, and the circularly polarized luminescence spectrum of the complex, Biochemistry 19:1377–1382.PubMedGoogle Scholar
  86. Dux, L., Taylor, K. A., Ting-Beall, H.P., and Martonosi, A., 1985. Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions, J. Biol. Chem. 260:11730–11743.PubMedGoogle Scholar
  87. Dwek, R. A., Richards, R. E., Morallee, K. G., Neiboer, E., Williams, R. J. P., and Xavier, A. V., 1971. The lanthanide cations as probes in biological systems. Proton relaxation enhancement studies for model systems and lysozyme, Eur. J. Biochem. 21:204–209.PubMedGoogle Scholar
  88. Dwek, R. A., Levy, H.R., Radda, G.K., and Seeley, P. J., 1975. Spin label and lanthanide binding sites on glyceraldehyde-3-phosphate dehydrogenase, Biochim. Biophys. Acta 377:26–33.PubMedGoogle Scholar
  89. Dwek, R.A., Grivol, D., Jones, R., McLaughlin, A.C., Wain-Hobson, S., White, A. I., and White, C., 1976. Interactions of the lanthanide- and hapten-binding sites in the Fv ragment from the myeloma protein MOPC 315, Biochem. J. 155:37–53.PubMedCentralPubMedGoogle Scholar
  90. El-Fakahany, E.E., Pfenning, M., and Richelson, E., 1984. Kinetic effects of terbium on muscarine acetylcholine receptors of murine neuroblastoma cells, J. Neurochem. 42: 863–869.PubMedGoogle Scholar
  91. Epstein, M., Levitzki, A., and Reuben, J., 1973. Studies of the calcium binding site of trypsin using rare earth ions, Proceedings of the 10th Rare Earth Research Conference, Vol. 1, Plenum Press, New York, pp. 124–126.Google Scholar
  92. Epstein, M., Levitzki, A., and Reuben, J., 1974. Binding of lanthanides and of divalent metal ions to porcine trypsin, Biochemistry 13:1777–1782.PubMedGoogle Scholar
  93. Epstein, M., Reuben, J., and Levitski, A., 1977. Calcium binding site of trypsin as probed by lanthanides, Biochemistry 16:2449–2457.PubMedGoogle Scholar
  94. Evans, C.H., 1981. Interactions of tervalent lanthanide ions with bacterial collagenase (clostridiopeptidase A), Biochem. J. 195:677–684.PubMedCentralPubMedGoogle Scholar
  95. Evans, C.H., 1985. The lanthanide-enhanced affinity chromatography of clostridial collagenase, Biochem. J. 225:553–556.PubMedCentralPubMedGoogle Scholar
  96. Evans, C.H., and Drouven, B.J., 1983. The enhancement of the rate of collagen polymerization by calcium and lanthanide ions, Biochem. J. 213:751–758.PubMedCentralPubMedGoogle Scholar
  97. Evans, C. H., and Mason, G. C., 1986. Studies on the stimulation of the bacterial collagenolytic enzyme clostridiopeptidase A by cobalt(II) ions, Int. J. Biochem. 18:89–92.PubMedGoogle Scholar
  98. Evans, C.H., and Ridella, J.D., 1985. Inhibition, by lanthanides, of neutral proteinases secreted by human, rheumatoid synovium, Eur. J. Biochem. 151:29–32.PubMedGoogle Scholar
  99. Evelhoch, J.C., 1981. Spectoscopic studies of zinc and calcium binding proteins, Ph.D. thesis, University of California, Riverside.Google Scholar
  100. Ferri, A., and Grazi, E., 1981. Different polymeric forms of actin detected by the fluorescent probe terbium ion, Biochemistry 20:6362–6366.PubMedGoogle Scholar
  101. Fishelson, Z., and Muller-Eberhard, H.J., 1983. The C3/C5 convertase of the alternative pathway of complement: stabilization and restriction of control by lanthanide ions, Mol. Immunol. 20:309–315.PubMedGoogle Scholar
  102. Furie, B., Eastlake, A., Schechter, A. N., and Anfinsen, C. B., 1973. The interaction of the lanthanide ions with staphylococcal nuclease, J. Biol. Chem. 248:5821–5825.Google Scholar
  103. Furie, B., Griffen, J.H., Feldman, R., Sokoloski, E. A., and Schechter, A.N., 1974. The active site of staphylococcal nuclease: paramagnetic relaxation of bound nucleotide inhibitor nuclei by lanthanide ions, Proc. Natl. Acad. Sci. USA 71:2833–2837.PubMedCentralPubMedGoogle Scholar
  104. Furie, B.C., and Furie, B., 1975. Interaction of lanthanide ions with bovine factor X and their use in the affinity chromatography of the venom coagulant protein of Vipera russelli, J. Biol. Chem. 250:601–608.Google Scholar
  105. Furie, B.C., Mann, K.G., and Furie, B., 1976. Substitution of lanthanide ions for calcium ions in the activation of bovine prothrombin by activated factor X, J. Biol. Chem. 254: 3235–3241.Google Scholar
  106. Furie, B.C., Blumenstein, H., and Furie, B., 1979. Metal binding sites of a γ-carboxyglu-tamic acid-rich fragment of bovine prothrombin, J. Biol. Chem. 254:12521–12530.PubMedGoogle Scholar
  107. Gafni, A., and Steinberg, I.Z., 1974. Optical activity of terbium ions bound to transferrin and conalbumin studied by circular polarization of luminescence, Biochemistry 13: 800–803.PubMedGoogle Scholar
  108. Genov, N., Shopova, M., and Boteva, R., 1985. Studies on the lanthanide complexes of subtilisins, Rev. Port. Quim. 27:266–267.Google Scholar
  109. Gershman, L. C., Sciden, L. A., and Estes, J. E., 1979. On the interaction of muscle actin with gadolinium, Biochem. Biophys. Res. Commun. 91:1280–1287.PubMedGoogle Scholar
  110. Gomez, J. E., Birnbaum, E. R., and Darnall, D. W., 1974. The metal ion acceleration of the conversion of trypsinogen to trypsin. Lanthanide ions as calcium ion substitutes, Biochemistry 13:3745–3750.PubMedGoogle Scholar
  111. Gross, M. K., Toscano, D. G., and Toscano, W. A., 1987. Calmodulin-mediated adenylate cyclase from mammalian sperm, J. Biol. Chem. 262:8672–8676.PubMedGoogle Scholar
  112. Henzl, M. T., and Birnbaum, E. R., 1988. Oncomodulin and Parvalbumin. A comparison of their interactions with europium ion, J. Biol. Chem. 263:10674–10680.PubMedGoogle Scholar
  113. Henzl, M.T., Hapak, R.C. and Birnbaum, E.R., 1986. Lanthanide binding properties of rat calmodulin, Biochim. Biophys. Acta 872:16–23.PubMedGoogle Scholar
  114. Henzl, M.T., McCubbin, W.D., Kay, C.M., and Birnbaum, E.R., 1985. Luminescence studies of lanthanide ion binding to parvalbumin, J. Biol. Chem. 260:8447–8455.PubMedGoogle Scholar
  115. Hershberg, R.D., Reed, G.H., Slotboom, A. J., and DeHaas, G. H., 1976. Phospholipase A2 complexes with gadolinium(III) and interaction of the enzyme-metal ion complex with monomeric and micellar alkylphosphorylcholines. Water proton nuclear magnetic relaxation studies, Biochemistry 15:2268–2274.PubMedGoogle Scholar
  116. Herzberg, O., and James, M. N. G., 1985. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution, Nature 313:653–659.PubMedGoogle Scholar
  117. Highsmith, S. R., and Head, M. R., 1983. Terbium(3 +) binding to calcium and magnesium binding sites on sarcoplasmic reticulum ATPase, J. Biol. Chem. 258:6858–6862.PubMedGoogle Scholar
  118. Highsmith, S., and Murphy, A. J., 1984. Nd3+ and Co2+ binding to sarcoplasmic reticulum Ca ATPase. An estimation of the distance from the ATP binding site to the high-affinity calcium binding sites, J. Biol. Chem. 259:14651–14656.PubMedGoogle Scholar
  119. Holmquist, B., and Vallée, B. L., 1978. Magnetic circular dichroism, in Methods in Enzymology (C. H. W. Hirs and S. N Timasheff, eds.), Vol. XLIV G, Academic Press, New York, pp. 149–179.Google Scholar
  120. Holten, V.Z., Kyker, G.C., and Pulliam, M., 1966. Effects of lanthanum chlorides on selected enzymes, Proc. Soc. Exp. Biol. Med. 123:913–919.PubMedGoogle Scholar
  121. Homer, R.B., and Mortimer, B.D., 1978. Europium II as a replacement for calcium II in conconavalin A. A precipitation assay and magnetic circular dichroism study, FEBS Lett. 87:69–72.PubMedGoogle Scholar
  122. Horecker, B.L., Stotz, E., and Hogness, T. R., 1939. The promoting effect of aluminum, chromium and the rare earths in the succinic dehydrogenase-cytochrome system, J. Biol. Chem. 128:251–256.Google Scholar
  123. Horrocks, W. DeW., 1982. Lanthanide ion probes of biomolecular structure, in Advances in Inorganic Biochemistry (G. L. Eichhorn and L.G. Marzilli, eds.), Vol. 4, Elsevier, New York, pp. 201–261.Google Scholar
  124. Horrocks, W. DeW., and Collier, W. E., 1981. Lanthanide ion luminescence probes. Measurement of distance between intrinsic protein fluorophores and bound metal ions: quantitation of energy transfer between tryptophan and terbium(III) or europium(III) in the calcium-binding protein parvalbumin, J. Am. Chem. Soc. 103:2856–2862.Google Scholar
  125. Horrocks, W. D., and Snyder, A. P., 1981. Measurement of distance between fluorescent amino acid residues and metal ion binding sites. Quantitation of energy transfer betweentryptophan and terbium(III) or europium(III) in thermolysin, Biochem. Biophys. Res. Commun. 100:111–117.PubMedGoogle Scholar
  126. Horrocks, W. DeW., Holmquist, B., and Vallée, B.L., 1975. Energy transfer between terbium(III) and cobalt(II) in thermolysin: a new class of metal-metal distance probes, Proc. Natl. Acad. Sci. USA 72:4764–4768.PubMedCentralPubMedGoogle Scholar
  127. Horrocks, W. DeW., Mulqueen, P., Rhee, M.J., Breen, P. J., and Hild, E. K., 1983. Europium(III) laser luminescence excitation spectroscopy of calcium-modulated proteins: parvalbumin and calmodulin, Inorg. Chim. Acta 79:24–25.Google Scholar
  128. Hwang, Y.T., Andrews, L.J., and Solomon, E.I., 1984. Resonant fluorescence study of the Eu3+-substituted Ca2+ site in Busy con hemocyanin: structural coupling between the heterotropic allosteric effector and the coupled binuclear copper active site, J. Am. Chem. Soc. 106:3832–3838.Google Scholar
  129. Imanishi, A., 1966. Calcium binding by bacterial «-amylase, J. Biochem. 60:381–390.PubMedGoogle Scholar
  130. Itoh, N., and Kawakita, M., 1984. Characterization of Gd3+ and Tb3+ binding sites on Ca2+-Mg2+-adenosine triphosphatase of sarcoplasmic reticulum, J. Biochem. 95:661–669.PubMedGoogle Scholar
  131. Izutsu, K. T., Felton, S. P., Siegel, I. A., Yoda, W. T., and Chen, A. C. N., 1972. Aequorin: its ionic specificity, Biochem. Biophys. Res. Commun. 49:1034–1039.PubMedGoogle Scholar
  132. Jones, R., Dwek, R. A., and Forsen, S., 1974. The mechanism of water-proton relaxation in enzyme-paramagnetic-ion complexes. I. The Gd(III) lysozyme complex, Eur. J. Biochem. 47:271–283.PubMedGoogle Scholar
  133. Katzin, L. I., 1969. Absorption and circular dichroic spectral studies of europium(III) complexes with sugar acids and amino acids, with remarks on hypersensitivity, Inorg. Chem. 8:1649–1654.Google Scholar
  134. Katzin, L. I., and Gulyas, E., 1968. Absorption and circular dichroism spectral studies of chelate complexes of praseodymium(III) with α-amino acids, Inorg. Chem. 7:2442–2446.Google Scholar
  135. Kayne, M. S., and Cohn, M., 1972. Cation requirements of isoleucyl-RNA synthetase from Escherichia coli, Biochem. Biophys. Res. Commun. 46:1285–1291.Google Scholar
  136. Kilhoffer, M.C., Gerard, D., and Demaille, J. G., 1980. Terbium binding to octopus calmodulin provides the complete sequence of ion binding, FEBS Lett. 120:99–103.PubMedGoogle Scholar
  137. Klee, C. B., 1977. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3′,5′-cyclic adenosine monophosphate phosphodiesterase, Biochemistry 16: 1017–1024.PubMedGoogle Scholar
  138. Klumpp, S., Kleerfeld, G., and Schultz, J. E., 1983. Calcium/calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium. Dissociation of calmodulin by La3+: calmodulin specificity and properties of the reconstituted guanylate cyclase,J. Biol. Chem. 258:12455–12459.PubMedGoogle Scholar
  139. Kretsinger, R.H., 1976. Calcium binding proteins, Annu. Rev. Biochem. 45:239–266.PubMedGoogle Scholar
  140. Kronman, M.J., and Bratcher, S.C., 1984. Conformational changes induced by zinc and terbium binding to native bovine alpha-lactalbumin and calcium-free alpha-lactalbumin, J. Biol. Chem. 259:10887–10895.PubMedGoogle Scholar
  141. Kronman, M. J., Sinha, S.K., and Brew, K., 1981. Characteristics of the binding of Ca2+ and other divalent metal ions to bovine α-lactalbumin, J. Biol. Chem. 256:8582–8587.PubMedGoogle Scholar
  142. Kuiper, H., Finazzi-Agro, A., Antonini, E., and Brunori, M., 1979. The replacement of calcium by terbium as an allosteric effector of hemocyanins, FEBS Lett. 99:317–320.PubMedGoogle Scholar
  143. Kuiper, H. A., Zolla, L., Finazzi-Agro, A., and Brunori, M., 1981. Interaction of lanthanide ions with Panulirus interruptus hemocyanin: evidence for vicinity of some of the cation binding sites, J. Mol. Biol. 149:805–812.PubMedGoogle Scholar
  144. Kurachi, K., Sieker, L. C., and Jensen, L. H., 1975. Metal ion binding in triclinic lysozyme, J. Biol. Chem. 250:7663–7667.PubMedGoogle Scholar
  145. Lau, Y. S., and Gnegy, M.E., 1980. Effects of lanthanum and trifluoperazine on 125I calmodulin binding to rat striated particulates, J. Pharmacol. Exp. Ther. 215:28–34.PubMedGoogle Scholar
  146. Leavis, P.C., Nagy, B., Lehrer, S.S., Bialkowska, H., and Gergely, J., 1980. Terbium binding to troponin C: binding stoichiometry and structural changes induced in the protein, Arch. Biochem. Biophys. 200:17–21.PubMedGoogle Scholar
  147. Lee, L., and Sykes, B.D., 1980. The use of lanthanide NMR shift probes in the determination of the structure of calcium binding proteins in solution; application to the EF calcium binding site of carp parvalbumin, Develop. Biochem. 14:323–326.Google Scholar
  148. Lee, L., and Sykes, B.D., 1981. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin, Biochemistry 20: 1156–1162.PubMedGoogle Scholar
  149. Lee, L., Corson, D.C., and Sykes, B. D., 1985. Structural studies of calcium binding proteins using nuclear magnetic resonance, Biophys. J. 47:139–142.PubMedCentralPubMedGoogle Scholar
  150. Lenkinski, R. E., and Stephens, R. C., 1982. The lanthanides as structural probes in peptides, in The Rare Earths in Modern Science and Technology (G.J. McCarthy, H. B. Silber, and J.J. Rhyne, eds.), Vol. 3, Plenum Press, New York, pp. 45–51.Google Scholar
  151. Lenkinski, R. E., and Stephens, R. L., 1983. The nature of the Ln3+-angiotensin II complex. A 13C nmr study of the binding of Yb3+ to angiotensin II, J. Inorg. Biochem. 18:175–180.PubMedGoogle Scholar
  152. Lenkinski, R. E., Glickson, J.D., and Walter, R., 1978. A fluorescence study of the binding of calcium and terbium ions to angiotensin, Bioinorg. Chem. 8:363–368.PubMedGoogle Scholar
  153. Lenkinski, R. E., Peerce, B. E., Pillai, R. P., and Glickson, J. D., 1980. Calcium(II) and the trivalent lanthanide ion complexes of the bleomycin antibiotics. Potentiometrie, fluorescence and ‘H NMR studies, J. Am. Chem. Soc. 102:7088–7093.Google Scholar
  154. Leung, C.S.H., and Meares, C.F., 1977. Attachment of fluorescent metal chelates to macromolecules using “bifunctional” chelating agents, Biochem. Biophys. Res. Commun. 75:149–155.PubMedGoogle Scholar
  155. Levitzki, A., and Reuben, J., 1973. Abortive complexes of α-amylases with lanthanides, Biochemistry 12:41–44.PubMedGoogle Scholar
  156. Luk, C. K., 1971. Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes, Biochemistry 10:2838–2843.Google Scholar
  157. Luterbacher, S., and Schatzmann, H. J., 1983. The site of action of lanthanum in the reaction cycle of the human red cell membrane calcium-pump ATPase, Experientia 39:311–312.PubMedGoogle Scholar
  158. Macara, I.G., Hoy, T.G., and Harrison, P.M., 1973. The formation of ferritin from apo-ferritin. Inhibition and metalion binding sites, Biochem. J. 135:785–789.PubMedCentralPubMedGoogle Scholar
  159. McCubbin, W.D., Oikawa, K., and Kay, C.M., 1981. The effect of terbium on the structure of actin and myosin subfragment 1 as measured by circular dichroism, FEBS Lett. 127: 245–249.PubMedGoogle Scholar
  160. McDonald, M.R., and Kunitz, M., 1941. The effect of calcium and other ions on the autocatalytic formation of trypsin from trypsinogen, J. Gen. Physiol. 25:53–73.PubMedCentralPubMedGoogle Scholar
  161. Marinetti, T. D., Snyder, G.H., and Sykes, B.D., 1976. Nuclear magnetic resonance determination of intramolecular distances in bovine pancreatic trypsin inhibitor using nitrotyrosine chelation of lanthanides, Biochemistry 15:4600–4608.PubMedGoogle Scholar
  162. Marquis, J. K., 1984. Terbium binding to rat brain acetylcholinesterase. A fluorescent probe of anionic sites, Comp. Biochem. Physiol. C 78:335–338.PubMedGoogle Scholar
  163. Marquis, J. K., and Webb, G.D., 1976. The effects of calcium and lanthanum on the interaction of decamethonium with soluble acetylcholinesterase from Electrophorus elec-tricus, J. Neurochem. 27:329–331.Google Scholar
  164. Marsden, B. J., Hodges, R. S., and Sykes, B. D., 1988. ‘H-NMR Studies of synthetic peptide analogues of calcium-binding site III of rabbit skeletal troponin C: effect on the lanthanum affinity of the interchange of aspartic acid and asparagine residues at the metal ion coordinating positions, Biochemistry 27:4198–4206.PubMedGoogle Scholar
  165. Marsh, H.C., Sarasua, M.M., Madar, D.A., Hiskey, R.G., and Koehler, K.A., 1981. Europium(III) binding to bovine prothrombin residues 1–39 and to bovine prothrombin fragment I, J. Biol. Chem. 256:7863–7870.PubMedGoogle Scholar
  166. Martin, R. B., 1983. Structural chemistry of calcium: lanthanides as probes, in Calcium in Biology (T. G. Spiro, ed.), Wiley, New York, pp. 237–270.Google Scholar
  167. Martin, R. B., 1984. Bioinorganic chemistry of calcium, in Metal Ions in Biological Systems, (H. Sigel, ed.), Vol. 17, Marcel Dekker, Basel, pp. 1–50.Google Scholar
  168. Martin, R. B., and Richardson, F. S., 1979. Lanthanides as probes for calcium in biological systems, Quart. Rev. Biophys. 12:181–209.Google Scholar
  169. Matthews, B.W., and Weaver, L. H., 1974. Binding of lanthanide ions to thermolysin, Biochemistry 13:1719–1725.PubMedGoogle Scholar
  170. Matthews, B. W., Colman, P. M., Jansonius, J. N., Titani, K., Walsh, K. A., and Neurath, H., 1972. Structure of thermolysin, Nature New Biol. 238:41–43.PubMedGoogle Scholar
  171. Matthews, B.W., Weaver, L. H., and Kester, W.R., 1974. The conformation of thermo-lylsin, J. Biol. Chem. 249:8030–8044.PubMedGoogle Scholar
  172. Mazzei, G.J., Qi, D.F., Schatzman, R.C., Raynor, R. L., Turner, R.S., and Kuo, J. F., 1983. Comparative abilities of lanthanide ions, La3+ and Tb3+ to substitute for calcium in regulating phospholipid-sensitive Ca2+-dependent protein kinase and myosin light chain kinase, Life Sci. 33:119–129.PubMedGoogle Scholar
  173. Meares, C. F., and Ledbetter, J. E., 1977. Energy transfer between terbium and iron bound to transferrin: reinvestigation of the distance between metal-binding sites, Biochemistry 16:5178–5180.PubMedGoogle Scholar
  174. Meares, C. F., and Rice, L. S., 1981. Diffusion-enhanced energy transfer shows accessibility of ribonucleic acid polymerase inhibitor binding sites, Biochemistry 20:610–617.PubMedGoogle Scholar
  175. Menestrina, G., 1983. Effects of terbium on the hemocyanin pore formation rate in phosphatidylcholine planar bilayers, Biochim. Biophys. Acta 735:297–301.Google Scholar
  176. Miller, T. L., Nelson, D.J., Brittain, H. G., Richardson, F. S., Martin, R. B., and Kay, C., 1975. Calcium binding sites of rabbit troponin and carp parvalbumin, FEBS Lett. 58: 262–264.PubMedGoogle Scholar
  177. Miller, T. L., Cook, R.M., Nelson, D.J., and Theoharides, A.D., 1980. Terbium luminescence from the calcium binding sites of parvalbumin, J. Mol. Biol. 141:223–226.PubMedGoogle Scholar
  178. Moeller, T., Martin, D. F., Thompson, L.C., Ferrus, R., Feistel, G.F., and Randall, W. J., 1965. The coordination chemistry of yttrium and the rare earth metal ions, Chem. Rev. 65:1–50.Google Scholar
  179. Moews, P. C., and Kretsinger, R. H., 1975. Terbium replacement of calcium in carp muscle calcium-binding parvalbumin: an X-ray crystallographic study, 7. Mol. Biol. 91:229–232.Google Scholar
  180. Morrison, J. F., and Cleland, W. W., 1980. A kinetic method for determining dissociation constants for metal complexes of adenosine 5′-triphosphate and adenosine 5’-diphos-phate, Biochemistry 19:3128–3131.Google Scholar
  181. Morrison, J. F., 1982. The slow-binding and and slow tight-binding inhibition of enzyme-catalyzed reactions, Trends Biochem. Sci. 7:102–105.Google Scholar
  182. Morrison, J.F., and Cleland, W.W., 1983. Lanthanide-adenosine 5’-triphosphate complexes: determination of their dissociation constants and mechanism of action as inhibitors of yeast hexokinase, Biochemistry 22:5507–5513.Google Scholar
  183. Nathanson, J. A., Freedman, R., and Hoffer, B. J., 1976. Lanthanum inhibits brain adenylate cyclase and blocks noradrenergic depression of Purkinje cell discharge independent of calcium, Nature 261:330–332.PubMedGoogle Scholar
  184. Nayler, W. G., and Harris, J. P., 1976. Inhibition of lanthanum of the Na+-K+ activated, ouabain-sensitive adenosinetriphosphatase enzyme, J. Mol. Cell Cardiol. 8:811–822.PubMedGoogle Scholar
  185. Nelsestuen, G.L., Broderius, M., and Martin, G., 1976. Role of y-carboxyglutamic acid. Cation specificity of prothrombin and factor X-phospholipid binding, J. Biol. Chem. 251:6886–6893.PubMedGoogle Scholar
  186. Nelson, B.E., Gan, S.J., and Strothkamp, K.G., 1981. Terbium ion binding to Limulus polyphemus hemocyanin, Biochem. Biophys. Res. Commun. 100:1305–1313.PubMedGoogle Scholar
  187. Nelson, D.J., Miller, T. L., and Martin, R. B., 1977. Noncooperative Ca(II) removal and terbium(III) substitution in carp muscle calcium binding parvalbumin, Bioinorg. Chem. 7:325–334.PubMedGoogle Scholar
  188. Novello, F., and Stirpe, F., 1969. The effects of copper and other ions on the ribonucleic acid polymerase activity of rat liver nuclei, Biochem. J. 111:115–119.PubMedCentralPubMedGoogle Scholar
  189. O’Hara, P. B., and Bersohn, R., 1982. Resolution of the two metal binding sites of human serum transferrin by low-temperature excitation of bound europium(III), Biochemistry 21:5269–5272.PubMedGoogle Scholar
  190. O’Hara, P., Yeh, S.M., Meares, C.F., and Bersohn, R., 1981. Distance between metal-binding sites in transferrin: energy transfer from bound terbium(IIl) to iron(III) or manganese(III), Biochemistry 20:4704–4708.PubMedGoogle Scholar
  191. Oikawa, K., McCubbin, W. D., and Kay, C. M., 1980. The effects of terbium and lanthanum on the biological activity of some representative muscle protein systems, FEBS Lett. 118:137–140.PubMedGoogle Scholar
  192. O’Neil, J.D., Dorrington, K.J., and Hofmann, T., 1984. Luminescence and circular-di-chroism analysis of terbium binding by pig intestinal calcium-binding protein (relative mass = 9000), Can. J. Biochem. Cell Biol. 62:434–442.PubMedGoogle Scholar
  193. Ostroy, F., Gams, R. A., Glickson, J. D., and Lenkinski, R. E., 1978. Inhibition of lysozyme by polyvalent metal ions, Biochim. Biophys. Acta 527:56–62.PubMedGoogle Scholar
  194. Peacocke, A. R., and Williams, P.A., 1966. Binding of calcium, yttrium and thorium to a glycoprotein from bovine cortical bone, Nature 211:1040–1041.Google Scholar
  195. Pecoraro, V.L., Harris, W.R., Corrano, C.J., and Raymond, K.N., 1981. Siderophilin metal coordination. Difference ultraviolet spectroscopy of di-, tri-, and tetravalent metal ions with ethylenebis[(o-hydroxyphenyl)glycine], Biochemistry 20:7033–7042.PubMedGoogle Scholar
  196. Perkins, S.J., Johnson, L.N., Machin, P.A., and Phillips, D.C., 1979. Crystal structures of hen egg-white lysozyme complexes with gadolinium(III) and gadolinium(III)-Af-acetyl-D-glucosamine, Biochem. J. 181:21–36.PubMedCentralPubMedGoogle Scholar
  197. Perkins, S.J., Johnson, L.N., Phillips, D.C., and Dwek, R.A., 1981. The simultaneous binding of lanthanide and N-acetylglucosamine inhibitors to hen egg-white lysozyme in solution by ‘H and 13C nuclear magnetic resonance, Biochem. J. 193:573–588.PubMedCentralPubMedGoogle Scholar
  198. Prados, R., Stadtherr, L. G., Donato, H., and Martin, R. B., 1974. Lanthanide complexes of amino acids, J. Inorg. Nucl. Chem. 36:689–693.Google Scholar
  199. Prendergast, F.G., and Mann, K.G., 1977. Differentiation of metal ion-induced transitions of prothrombin fragment 1, J. Biol. Chem. 252:840–850.PubMedGoogle Scholar
  200. Prendergast, F.G., Lu, J., and Callahan, P. J., 1983. Oxygen quenching of sensitized terbium luminescence in complexes of terbium with small organic ligands and proteins, J. Biol. Chem. 258:4075–4078.PubMedGoogle Scholar
  201. Quiram, D. R., and Weinshilboum, R. M., 1976. Inhibition of rat liver catechol-0-methyl-transferase by lanthanum, neodymium and europium, Biochem. Pharmacol. 25:1727–1732.PubMedGoogle Scholar
  202. Quist, E. E., and Roufogalis, B. D., 1975. Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor, FEBS Lett. 50: 135–139.PubMedGoogle Scholar
  203. Radhakrishnan, T. M., Walsh, K. A., and Neurath, H., 1969. The promotion of activation of bovine trypsinogen by specific modification of aspartyl residues, Biochemistry 8: 4020–4027.PubMedGoogle Scholar
  204. Rakhimov, M.M., Kalendareva, T.I., Rashidova, S.Sh., and Mad’yarov, Sh.R., 1982. Role of calcium ions in the catalytic activity of phospholipase D, Biokhimiya 47:1649–1662;Google Scholar
  205. Rakhimov, M.M., Kalendareva, T.I., Rashidova, S.Sh., and Mad’yarov, Sh.R., 1982. Role of calcium ions in the catalytic activity of phospholipase D, Chem. Abstr. 98:13588 (1983).Google Scholar
  206. Renaud, G., Soler-Argilaga, C., and Infante, R., 1980. Effect of cerium on liver lipidsmetabolism and plasma lipoproteins synthesis in the rat, Biochem. Biophys. Res. Commun. 95:220–227.PubMedGoogle Scholar
  207. Reuben, J., 1971. Gadolinium(III) as a paramagnetic probe for proton relaxation studies of biological macromolecules. Binding to bovine serum albumin, Biochemistry 10:2834–2838.PubMedGoogle Scholar
  208. Reuben, J., and Luz, Z., 1976. Longitudinal relaxation in spin 7/2 systems. Frequency dependence of lanthanum-139 relaxation times in protein solutions as a method of studying macromolecular dynamics, J. Phys. Chem. 80:1357–1369.Google Scholar
  209. Rhee, M-J., Sudnick, D.R., Arkle, V.K., and Horrocks, W.DeW., 1981. Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energytransfer distance measurements in calcium-binding proteins. I. Parvalbumin, Biochemistry 20:3328–3334.PubMedGoogle Scholar
  210. Rhee, M.J., Horrocks, W.D., and Kosow, D. P., 1982. Laser-induced europium(III) luminescence as a probe of the metal ion mediated association of human prothrombin with phospholipid, Biochemistry 21:4524–4528.PubMedGoogle Scholar
  211. Rhee, M.J., Horrocks, W.DeW., and Kosow, D.P., 1984. Laser-induced lanthanide luminescence as a probe of metal ion-binding sites of human factor X, J. Biol. Chem. 259:7404–7408.PubMedGoogle Scholar
  212. Richardson, C.E., and Behnke, W.D., 1978. Physical studies of lanthanide binding to conconavalin A, Biochim. Biophys. Acta 534:267–274.PubMedGoogle Scholar
  213. Rinderknecht, H., and Friedman, R. M., 1976. The effect of lanthanide ions on enteropep-tidase-catalyzed activation of trypsinogen, Biochim. Biophys. Acta 452:497–502.PubMedGoogle Scholar
  214. Roche, R. S., and Voordouw, G., 1978. The structural and functional roles of metal ions in thermolysin, CRC Crit. Rev. Biochem. 5:1–23.PubMedGoogle Scholar
  215. Rosoff, B., and Spencer, H., 1975. Studies on electrophoretic binding of radioactive rare earths, Health Phys. 28:611–612.PubMedGoogle Scholar
  216. Rübsamen, H., Hess, G. P., Eldefrawi, A. T., and Eldefrawi, M.E., 1976. Interaction between calcium and ligand-binding sites of the purified acetylcholine receptor studied by use of a fluorescent lanthanide, Biochem. Biophys. Res. Commun. 68:56–62.PubMedGoogle Scholar
  217. Sarasua, M.M., Koehler, K. A., Skrzynia, C., and McDonagh, J.M., 1982. Human factor XIII-metal ion interactions. A luminescence and nuclear magnetic resonance study, J. Biol. Chem. 257:14102–14109.PubMedGoogle Scholar
  218. Schatzmann, H. J., and Tschabold, M., 1971. The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells, Experientia 27:59–61.PubMedGoogle Scholar
  219. Scott, T.L., 1984. Luminescence studies of Tb3+ bound to the high affinity sites of the Ca2+ -ATPase of sarcoplasmic reticulum, J. Biol. Chem. 259:4035–4037.PubMedGoogle Scholar
  220. Secemski, I.I., and Lienhard, G. E., 1974. The effect of gadolinium ion on the binding of inhibitors and substrates to lysozyme, J. Biol. Chem. 249:2932–2938.PubMedGoogle Scholar
  221. Sedmak, J. J., and Grossberg, S. E., 1981. Interferon stabilization and enhancement by rare earth salts, J. Gen. Virol. 52:195–198.PubMedGoogle Scholar
  222. Scifter, S., and Harper, E., 1959. Collagenases, in Methods in Enzymology (S. P. Colowick and N.O. Kaplan, eds.), Vol. IXX, Academic Press, New York, pp. 613–635.Google Scholar
  223. Seltzer, J. L., Welgus, H.G., Jeffrey, J. J., and Eisen, A.Z., 1976. The function of Ca2+ in the action of mammalian collagenases, Arch. Biochem. Biophys. 173:355–361.PubMedGoogle Scholar
  224. Shahid, F., Gomez, J.E., Birnbaum, E.R., and Darnall, D.W., 1982. The lanthanide-induced N→ F transition and acid expansion of serum albumin, J. Biol. Chem. 257: 5618–5622.PubMedGoogle Scholar
  225. Shelling, J.G., Bjornson, M.E., Hodges, R.S., Taneja, A. K., and Sykes, B.D., 1984. Contact and dipolar contributions to lanthanide induced NMR shifts of amino acid and peptide models for calcium binding sites in proteins, J. Magn. Reson. 57:99–114.Google Scholar
  226. Shelling, J.G., Hofmann, T., and Sykes, B.D., 1985. Proton nuclear magnetic resonance studies of the interaction of the lanthanide ions ytterbium and lutetium with apo- and calcium-saturated porcine intestinal calcium binding protein, Biochemistry 24:2332–2338.Google Scholar
  227. Sherry, A.D., and Pascnol, E., 1977. Proton and carbon lanthanide-induced shifts in aqueous alanine. Evidence for structural changes along the lanthanide series, J. Am. Chem. Soc. 99:5871–5876.Google Scholar
  228. Sherry, A.D., Yoshida, C., Birnbaum, E.R., and Darnall, D.W., 1973. Nuclear magnetic resonance study of the interaction of neodymium(III) with amino acids and carboxylic acids. An aqueous shift reagent, J. Am. Chem. Soc. 95:3011–3014.Google Scholar
  229. Sherry, A.D., Newman, A.D., and Gutz, C.G., 1975. The activation of concanavalin A by lanthanide ions, Biochemistry 14:2191–2196.PubMedGoogle Scholar
  230. Sherry, A. D., Au-Young, S., and Cottam, G. L., 1978. Fluorescence properties of terbium-alkaline phosphatase, Arch. Biochem. Biophys. 189:277–282.PubMedGoogle Scholar
  231. Short, M. T., and Osmand, A. P., 1983. Luminescence energy transfer studies of C-reactive protein. Binding of terbium(III) ions in C-reactive protein, Immunol. Commun. 12: 291–300.PubMedGoogle Scholar
  232. Sieker, L.C., Adman, E., and Jensen, L.H., 1972. Structure of the Fe-S complex in a bacterial ferrodoxin, Nature 235:40–42.PubMedGoogle Scholar
  233. Sinha, S.P., 1966. Complexes of the Rare Earths, Pergamon Press, New York.Google Scholar
  234. Smith, B. M., Gindhart, T., and Colburn, N. H., 1986. Possible involvement of a lanthanide-sensitive protein kinase C substrate in lanthanide promotion of neoplastic transformation, Carcinogenesis 7:1949–1956.PubMedGoogle Scholar
  235. Smolka, G.E., Birnbaum, E.R., and Darnall, D.W., 1971. Rare earth metal ions as substitutes for the calcium ion in Bacillus subtilis α-amylase, Biochemistry 10:4556–4561.PubMedGoogle Scholar
  236. Snyder, A. P., Sudnick, D. R., Arkle, V. K., and Horrocks, W. DeW., 1981. Lanthanide ion luminescence probes. Characterization of metal ion binding sites and intermetal energy transfer distance measurements in calcium-binding proteins. 2. Thermolysin, Biochemistry 20:3334–3339.PubMedGoogle Scholar
  237. Sommerville, L.E., Thomas, D.D., and Nelsentuen, G.L., 1985. Tb3+ binding to bovine prothrombin and bovine prothrombin fragment 1, J. Biol. Chem. 260:10444–10452.PubMedGoogle Scholar
  238. Sowadski, J., Cornick, G., and Kretsinger, R. H., 1978. Terbium replacement of calcium in parvalbumin, J. Mol. Biol. 124:123–132.PubMedGoogle Scholar
  239. Spartalian, K., and Oosterhuis, W.T., 1973. Moessbauer effect studies of transferrin, J. Chem. Phys. 59:617–622.Google Scholar
  240. Sperling, R., Furie, B.C., Blumenstein, M., Keyt, B., and Furie, B., 1978. Metal binding properties of γ-carboxyglutamic acid. Implications for the vitamin-K dependent blood coagulation proteins, J. Biol. Chem. 253:3898–3906.PubMedGoogle Scholar
  241. Sperow, J.W., and Butler, L.G., 1972. Yeast inorganic pyrophosphatase V. Binding of Eu3+, Bioinorg. Chem. 2:87–91.Google Scholar
  242. Steer, M. L., and Levitzki, H., 1973. Metal specificity of mammalian a-amylase as revealed by enzyme activity and structural probes, FEB S Lett. 31:89–93.Google Scholar
  243. Stefanini, S., Chiancone, E., Antonini, E., and Finazzi-Agro, A., 1983. Binding of terbium to apoferritin: a fluorescence study, Arch. Biochem. Biophys. 222:430–434.PubMedGoogle Scholar
  244. Stephens, E.M., and Grisham, C.M., 1979. Lithium-7 nuclear magnetic resonance, water proton nuclear magnetic resonance and gadolinium electron paramagnetic resonance studies of the sarcoplasmic reticulum calcium ion transport adenosine triphosphatase, Biochemistry 18:4876–4885.PubMedGoogle Scholar
  245. Szebenyi, D. M. E., Oberdorf, S. K., andMoffat, K., 1981. Structure of vitamin-D dependent calcium-binding protein from bovine intestine, Nature 294:327–332.PubMedGoogle Scholar
  246. Takeo, S., Duke, P., Tamm, G.M., Singal, P. K., and Dhalla, N.S., 1979. Effects of lanthanum on the heart sarcolemmal ATPase and calcium binding activities, Can. J. Physiol. Pharmacol. 57:496–503.PubMedGoogle Scholar
  247. Tallant, E.A., Wallace, R.W., Dockter, M.E., and Cheung, W. Y., 1980. Activation of calmodulin by terbium (Tb3+) and its use as a fluorescence probe, Ann. N.Y. Acad. Sci. 356:436.PubMedGoogle Scholar
  248. Tanner, S.P., and Choppin, G.R., 1968. Lanthanide and actinide complexes of glycine. Determination of stability constants and thermodynamic parameters by a solvent extraction method, Inorg. Chem. 7:2046–2051.Google Scholar
  249. Tanswell, P., Westhead, E. W., and Williams, R.J. P., 1974. Inhibition of yeast phospho-glycerate kinase by lanthanide-ATP complexes, FEBS Lett. 48:60–63.PubMedGoogle Scholar
  250. Teuwissen, B., Masson, P. L., Osinski, P., and Heremans, J. F., 1972. Metal-combining properties of human lactoferrin. The possible involvement of tyrosyl residues in the binding sites. Spectrophotometric titration, Eur. J. Biochem. 31:239–245.PubMedGoogle Scholar
  251. Tomlinson, G., Mutus, B., McLeman, I., and Mooibroek, M.J., 1982. Activation and inactivation of purified acetylcholinesterase from Electrophorus electricus by lan- thanum(III), Biochim. Biophys. Acta 703:142–148.PubMedGoogle Scholar
  252. Treffry, A., and Harrison, P. M., 1984. Spectroscopic studies on the binding of iron, terbium and zinc by apoferritin, J. Inorg. Biochem. 21:9–20.PubMedGoogle Scholar
  253. Valentine, K. M., and Cottam, G. L., 1973. Gadolinium as a probe of the alkaline earth and ATP-metal binding sites in pyruvate kinase, Arch. Biochem. Biophys. 158:346–354.PubMedGoogle Scholar
  254. Van Scharrenburg, G.J.M., Slotboom, A. J., de Haas, G.H., Mulqueen, P., Breen, P. J., and Horrocks, W. DeW., 1985. Catalytic Ca2+-binding site of pancreatic phospholipase A2: laser-induced Eu3+ luminescence study, Biochemistry 24:334–339.PubMedGoogle Scholar
  255. Vaughn, J.B., Stephens, R. L., Lenkinski, R. E., Krishna, M.R., Heavner, G.A., and Goldstein, G., 1981. Proton NMR investigation of Ln3+ complexes of thymopoietin 32–36, Biochim. Biophys. Acta 671:50–60.PubMedGoogle Scholar
  256. Vaughn, J. B., Stephens, R. L., Lenkinski, R. E., Heavner, G. A., Goldstein, G., and Krishna, N.R., 1982. Nuclear magnetic resonance analysis of Gd3+-induced perturbations inthymopoietin 32–36: a study of amide and aromatic proton resonances, Arch. Biochem. Biophys. 217:468–472.PubMedGoogle Scholar
  257. Viola, R. E., Morrison, J. F., and Cleland, W. W., 1980. Interaction of metal(III)-adenosine 5′-triphosphate complexes with yeast hexokinase, Biochemistry 19:3131–3137.PubMedGoogle Scholar
  258. Vogel, H. J., Drakenbert, T., Forsen, S., O’Neil, J. D. J., and Hofmann, T., 1985. Structural differences in the two calcium binding sites of the porcine intestinal calcium binding protein: a multinuclear NMR study, Biochemistry 24:3870–3876.PubMedGoogle Scholar
  259. Wallace, R. W., Tallant, E. A., Dockter, M.E., and Cheung, W. Y., 1982. Calcium binding domains of calmodulin, J. Biol. Chem. 257:1845–1854.PubMedGoogle Scholar
  260. Walsh, M., Stevens, F.C., Oikawa, K., and Kay, C.M., 1978. Circular dichroism studies of native and chemically modified Ca2+-dependent protein modulator, Can. J. Biochem. 57:267–273.Google Scholar
  261. Walter, R., Smith, C.W., Sarathy, K.P., Pillai, R.P., Krishna, N.R., Lenkinski, R.E., Glickson, J.D., and Hruby, V.J., 1981. H N.M.R. study of the conformation of [Glu 4] oxytocin and its lanthanide complexes in aqueous solution, Int. J. Pept. Protein Res. 17:56–64.PubMedGoogle Scholar
  262. Wang, C-L.A., 1986. Distance measurements between metal-binding sites of calmodulin and from these sites to cys-133 to troponin I in the binary complex, J. Biol. Chem. 261:11106–11109.PubMedGoogle Scholar
  263. ang, C. L. A., and Aquaron, R.R., 1980. Binding of calcium and terbium to native and nitrated calmodulin, in Calcium-Binding Proteins: Structure and Function (F. L. Siegel, E. Carafoli, R. H. Kretsinger, D.H. MacLennan, and R. H. Wasserman, eds.), Elsevier/North-Holland, New York.Google Scholar
  264. Wang, C. L. A., Leavis, P. C., Horrocks, W. DeW., and Gergely, J., 1981. Binding of lanthanide ions to troponin C., Biochemistry 20:2439–3444.PubMedGoogle Scholar
  265. Wang, C. L., Aquaron, R. R., Leavis, P. C., and Gergely, J., 1982. Metal-binding properties of calmodulin, Eur. J. Biochem. 124:7–12.PubMedGoogle Scholar
  266. Wang, C. L., Leavis, P. C., and Gergely, J., 1984. Kinetic studies show that Ca2+ and Tb3+ have different binding preferences toward the four Ca2+-binding sites of calmodulin, Biochemistry 23:6410–6415.PubMedGoogle Scholar
  267. Watson, H.C., Duee, E., and Mercer, W. D., 1972. Low resolution structure of glyceral-dehyde 3-phosphate dehydrogenase, Nature New Biol. 240:130–133.PubMedGoogle Scholar
  268. Watterson, D. M., Sharief, F., and Vanaman, T. C., 1980. The complete amino acid sequence of Ca2+-dependent modulator protein (calmodulin) of bovine brain, J. Biol. Chem. 255: 462–475.Google Scholar
  269. Wedler, F. C., and D’Aurora, V., 1974. Spectroscopic probes of Escherichia coli glutamine synthetase. Rare earth ions by difference absorption, Biochim. Biophys. Acta 371: 432–441.PubMedGoogle Scholar
  270. Weiner, M.L., and Lee, K.S., 1972. Active calcium uptake by inside-out and right side-out vesicles of red blood cell membranes, J. Gen. Physiol. 59:462–475.PubMedCentralPubMedGoogle Scholar
  271. Willan, K.J., Wallace, K.H., Jaton, J.C., and Dwek, R. A., 1977. The use of gadolinium as a probe in the Fc region of a homogeneous anti-(type-III pneumococcal polysaccharide) antibody, Biochem. J. 161:205–211.PubMedCentralPubMedGoogle Scholar
  272. Williams, P. F., and Turtle, J.R., 1984. Terbium, a fluorescent probe for insulin receptor binding. Evidence for a conformational change in the receptor protein due to insulin binding, Diabetes 33:1106–1111.PubMedGoogle Scholar
  273. Williams, T.C., Corson, D.C., and Sykes, B.D., 1983. Calcium binding sites on proteins: conclusions from studies of the interaction of the lanthanides with carp parvalbumin, Develop. Biochem. 25:57–58.Google Scholar
  274. Williams, T.C., Corson, D.C., and Sykes, B.D., 1984. Calcium-binding proteins: calcium(II)-lanthanide(III) exchange in carp parvalbumin, J. Am. Chem. Soc. 106: 5698–5702.Google Scholar
  275. Williams, T.C., Corson, D.C., Oikawa, K., McCubbin, W.D., Kay, C.M., and Sykes, B.D., 1986. HNMR spectroscopic studies of calcium-binding proteins. 3. Solution conformations of rat apo-a-parvalbumin and metal-bound rat a-parvalbumin, Biochemistry 25:1835–1846.PubMedGoogle Scholar
  276. Wolf, D.J., Poirier, P.G., Brostrom, C.O., and Brostrom, M.A., 1977. Divalent cation binding properties of bovine brain Ca2+-dependent regulator protein, J. Biol. Chem. 252:4108–4116.Google Scholar
  277. Yamada, S., and Tonomura, Y., 1972. Reaction mechanism of Ca2+-dependent ATPase of sarcoplasmic reticulum from skeletal muscle. VII. Recognition and release of Ca2+ ions, J. Biochem. 72:417–425.PubMedGoogle Scholar
  278. Yeh, S.M., and Meares, C.F., 1980. Characterization of transferrin metal-binding sites by diffusion-enhanced energy transfer, Biochemistry 19:5057–5062.PubMedGoogle Scholar
  279. Yici, G., 1986. Work cited in China Rare Earth Information, No. 3, p. 4.Google Scholar
  280. Zimmerman, U.J. P., and Schlaepfer, W. W., 1982. Characterization of a brain calcium-activated protease that degrades neurofilament proteins, Biochemistry 21:3977–3983.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. H. Evans
    • 1
  1. 1.The Ferguson LaboratoryUniversity of PittsburghPittsburghUSA

Personalised recommendations